MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Green Synthesis Study: Adsorption of Congo Red Dye With Selenium Nanoparticles Obtained From prunus Armeniaca L. Leaf Waste

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley-v C H verlag Gmbh

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

In this study, it was aimed to remove Congo Red (CR) dye in aqueous solution by biosynthesized Selenium Nanoparticles from Prunus armeniaca L. (PAL-SeNPs) leaf wastes by green synthesis method. The characteristic structure of PAL-SeNPs was determined by UV-vis spectroscopy, X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), scanning electron microscope (SEM), energy dispersive X-ray (EDX), fourier transform infrared spectroscopy (FTIR), thermogravimetry-differential thermal analysis (TGA-DTA), dynamic light scattering (DLS), zetasizer, and point of zero charge (pHpzc). The effects of pH, adsorbent amount, time, initial concentration, and temperature were investigated by batch adsorption studies. 2 different kinetic and 4 isotherm models were tested and error analysis functions were determined for the most suitable model. Accordingly, the particle size, crystallinity, pHpzc value and average surface charge of PAL-SeNPs were determined as 9.969 nm, 48.50 %, 3.47, and -23.6 mV, respectively. Also, the most suitable kinetic and isotherm models for the removal of CR dye with PAL-SeNPs were found as Pseudo-second-order and Freundlich, with R2 values of 0.996, respectively. Also, where the optimum pH was 7.00, the maximum adsorption capacity was calculated as 96.59 mgCR/gPAL-SeNPs. The results obtained show that environmentally friendly and low-cost PAL-SeNPs produced by the green synthesis method are a suitable alternative for the removal of CR dye.

Description

Solmaz, Alper/0000-0001-6928-3289; Turna, Talip/0000-0001-6318-7245

Keywords

Green Synthesis, Congo Red, Nanoparticle, Adsorption, Prunus Armeniaca L.

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Q3

Source

Volume

9

Issue

37

Start Page

End Page