Cryogel-Immobilized Catalase as a Biocatalyst with Enhanced Stability Against Microplastics
No Thumbnail Available
Date
2025
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Catalase is a pivotal antioxidant enzyme that decomposes hydrogen peroxide and reduces oxidative stress. However, its low thermal and operational stability limits applications in challenging environments, particularly those contaminated with emerging pollutants such as polystyrene-based microplastics (PS-MPs). In this study, cryogels composed of Poly(2-hydroxyethyl methacrylate-co-allyl glycidyl ether) [Poly(HEMA-co-AGE)] were synthesized and evaluated as immobilization matrices to enhance catalase stability. Cryogels containing varying AGE concentrations were characterized using FT-IR, SEM, TEM, TGA, and BET analyses. The formulation with 250 mu L AGE exhibited optimal physicochemical properties, including improved water retention, increased surface area, and high immobilization capacity (356.3 mg center dot g(-1)). Immobilized catalase maintained superior activity under PS-MP-induced stress across a range of concentrations (0-1.0 mg center dot mL(-1)), temperatures (4-60 degrees C), and exposure times (up to 5 h). Kinetic modeling revealed a significant improvement in substrate affinity, with Km decreasing from 54.9 to 17.1 mM, while Vmax decreased moderately. Long-term stability tests showed that immobilized catalase retained similar to 80% activity after 70 days at 4 degrees C and 55% after 15 reuse cycles. Desorption studies confirmed the reusability of the cryogel system. These findings suggest that Poly(HEMA-co-AGE) cryogels provide a robust and reusable platform for catalase stabilization, offering potential for applications such as wastewater treatment and biosensing in microplastic-contaminated systems.
Description
Keywords
Catalase Immobilization, Cryogel Matrix, Microplastic Stress
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Q1
Scopus Q
Q3
Source
Gels
Volume
11
Issue
8