MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Morchella esculenta-based chitosan bionanocomposites: Evaluation as an antifungal agent

Loading...
Thumbnail Image

Date

2022

Journal Title

Journal ISSN

Volume Title

Publisher

Wiley Online Library

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Considering the damage caused by fungicides to human health and problems such as microbial resistance, biological control against plant pathogens has started to gain importance worldwide. This research demonstrates a new, simple, cost-effective, and environmentally friendly method for synthesizing chitosan bionanocomposite (CBNC) from Morchella esculenta (L) Pers-extract (MEE). The antifungal property of the synthesized Morchella esculenta (L) Pers-chitosan bionanocomposite (MCBNC) against some plant pathogens was also evaluated. FTIR, XRD, FE-SEM, DSC, TGA, and BET were used to characterize the synthesized MCBNC. Mushroom-based chitosan nanoparticles were evaluated for antifungal activity against some fungal pathogens, including Neoscytalidium novaehollandiae, N. dimidiatum, Alternaria alternata, Verticillium dahliae, Bipolaris sorokiniana, and Colletotrichum sp. The findings obtained clearly showed that chitosan nanoparticles have antifungal activity. The results suggest that the chitosan nanoparticle can be used in the field to protect various crops from phytopathogens. Novelty impact statement Chitosan bionanocomposite (MCBNC) synthesis was performed for the first time using the wild mushroom Morchella esculenta, which has strong bioactive properties. It was observed that the bionanomaterial, which was characterized by FTIR, XRD, FE-SEM, DSC, TGA, and BET analyses, has high antifungal activity against plant pathogens such as Alternaria alternata and Bipolaris sorokiniana. MCBNCs synthesized by the green synthesis method can be an important area of use in the fight against plant pathogens, which corresponds to 1/3 of the world's agricultural production potential.

Description

Keywords

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q3

Scopus Q

Source

Journal of Food Processing and Preservation

Volume

46

Issue

11

Start Page

End Page