Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Aslan, Sehmus"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 4
    Citation - Scopus: 3
    Energy-Aware Scheduling in Flow Shops: a Novel Artificial Neural Network-Driven Multi-Objective Optimization
    (Taylor & Francis Ltd, 2025) Aslan, Sehmus
    Group technology is a managerial strategy used to optimize production by reducing setup times, lead times, and work-in-process inventories. Research on flow-shop sequence-dependent group scheduling problems (FSDGSPs) has primarily focused on minimizing makespan and total flow time to improve efficiency. However, the need for energy-efficient scheduling in FSDGSPs remains underexplored despite increasing sustainability concerns. To address this, the energy-efficient flow-shop sequence-dependent group scheduling problem (EEFSDGSP) is introduced. A novel multi-objective optimization (MOO) technique, the artificial neural network-based multi-objective genetic algorithm (ANN-MOGA), is proposed to minimize makespan and energy consumption in EEFSDGSP. ANN-MOGA advances MOO by using a neural network to evaluate fitness and guide selection, reducing computational complexity versus traditional methods like NSGA-II and SPEA2. A post-processing step (PPANNS) further enhances solution diversity and distribution. Results show ANN-MOGA, especially with PPANNS, outperforms NSGA-II and competes effectively with SPEA2 in larger problem instances.
  • Loading...
    Thumbnail Image
    Article
    A Hybrid Genetic Algorithm for Solving Energy-Efficient Mixed-Model Robotic Two-Sided Assembly Line Balancing Problems With Sequence-Dependent Setup Times
    (Pamukkale Univ, 2024) Aslan, Sehmus
    Serious environmental challenges such as global warming and climate change have captured a growing amount of public awareness in the last decade. Besides monetary incentives, the drive for environmental preservation and the pursuit of a sustainable energy source have contributed to an increased recognition of energy usage within the industrial sector. Meanwhile, the challenge of energy efficiency stands out as a major focal point for researchers and manufacturers alike. Efficient assembly line balancing plays a vital role in enhancing production effectiveness. The robotic two-sided assembly line balancing problem (RTALBP) commonly arises in manufacturing facilities that produce large-sized products in high volumes. In this scenario, multiple robots are placed at each assembly line station to manufacture the product. The utilization of robots is extensive within two-sided assembly lines, primarily driven by elevated labour expenses. However, this adoption has resulted in the challenge of increasing energy consumption. Therefore, in this study, a new hybrid genetic algorithm is introduced, incorporating an adaptive local search mechanism. for the mixed-model robotic two-sided assembly line balancing problems with sequence-dependent setup times. This algorithm has two main objectives: minimizing cycle time (time-based approach) and overall energy consumption (energy-based approach). Depending on managerial priorities, either the time-based or energy-based model can be chosen for different production timeframes.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback