Browsing by Author "Dikilitaş, Murat"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article New disease caused by Neoscytalidium dimidiatum devastates tomatoes (Solanum lycopersicum) in Turkey(2019) Derviş, Sibel; Derviş, Sibel; Çiftçi, Osman; Ulubaş Serçe, Çiğdem; Dikilitaş, MuratA novel disease of tomato (Solanum lycopersicum L.) was observed in the Southeast Anatolia Region of Turkey. Symptoms were blight of all aerial parts of the plant, including stems, branches, leaves, petioles, flowers and fruits, defoliation, root rot, inner stem necrosis, and plant death. The disease was found in 13.9% of surveyed fields, with an incidence varying from 3% to nearly 75% (average 21.2%) of the plants in symptomatic fields. The average severity of blight on stem in fields with the symptomatic plant surveyed was 1.4%. A Botryosphaeriaceae species, identified as Neoscytalidium dimidiatum (Penz.) Crous & Slippers using morphological and cultural features, was consistently isolated from symptomatic roots, inner stems, and blighted leaves, shoots, stems, fruits and flowers. The partial nucleotide sequence data for three gene loci, including nuclear rDNA internal transcribed spacer (ITS), large subunit (LSU) genes and the translation elongation factor 1-alpha (TEF-1α), confirmed the morphological identification. Furthermore, sequence data of actin genes from N. dimidiatum was, for the first time, deposited to the GenBank. Koch's postulates were fulfilled by testing the susceptibility of different tomato tissues (leaves, stems, inner stems and roots of tomato seedlings, and detached tomato fruits and flowers) to N. dimidiatum inoculation. To our knowledge, this is the first report of N. dimidiatum on tomato.Article Phytopythium litorale: A novel killer pathogen of plane (Platanus orientalis) causing canker stain and root and collar rot(Plant Disease, 2020) Derviş, Sibel; Türkölmez, Şahimerdan; Çiftçi, Osman; Özer, Göksel; Serçe, Çiğdem Ulubaş; Dikilitaş, MuratDecline symptoms associated with lethal stem and branch canker stain along with root and collar rots were observed on 5- to 7-year-old roadside oriental plane trees (Platanus orientalis) in Diyarbakır, Turkey. Above-ground symptoms included leaf necrosis, leaf curling, extensive bluish or blackish staining of shoots, branches, stem bark, and wood surfaces, as well as stem cankers and exfoliation of branch bark scales. A general decline of the trees was distinctly visible from a distance. A Phytophthora/ Pythium-like oomycete species with globose to ovoid, often papillate and internally proliferating sporangia was consistently isolated from the fine and coarse roots and stained branch parts and shoots. The pathogen was identified as Phytopythium litorale based on several morphological features. Partial DNA sequences of three loci, including nuclear rDNA internal transcribed spacer (ITS) and the large ribosomal subunit (LSU), and mitochondrial cytochrome c oxidase subunit II (coxII) confirmed the morphological identification. All P. litorale isolates were homothallic, developing gametangia, ornamented oogonia with elongate to lobate antheridia. Pathogenicity of P. litorale was tested by inoculation on excised shoots and by root inoculation on seedlings. P. litorale produced large lesions and blights on shoots in just 5 days and killed 100% of the seedlings in a month. This paper presents the first confirmed report of P. litorale as an important pathogen on a plant species causing branch and stem cankers, and root and collar rot, in and on P. orientalis, resulting in a rapid decline of trees and suggesting a threat to plane.Conference Object Rehabilitation of soils containing high salt levels with beneficial fungi(2023) Derviş, Sibel; Un, Akin; Derviş, Sibel; Dikilitaş, MuratSoil salinity not only reduces the quality of the soil, but also causes ionic imbalance in the plant, competition in the nutrient uptake and toxic effects at high concentration. Combating salinity, which has become a greater stress factor due to impact of drought and high temperatures, is of great importance. In this study, 3 kg soil in pots, adjusted to 12 mS/m EC, under four different treatments (3 different fungi species and control) were compared in a laboratory environment. The experiment was designed with three replications for each subject and one plant in each pot. Fungi species (Clononotachys rosea, Trichoderma sp., Taloromyces funiculosus) were used as soil inoculant to reduce soil salinity. The soil electrical conductivity (EC) was between 9.25 and 9.95 mS/m within 1 month in tomato cultivated soils, while the EC of the plant-free medium was between 10.4 and 11.4 mS/m: thus, the salt content did not differ statistically. EC values of the saline soils was decreased by 21-, 17-, 29 %, respectively, when Trichoderma sp., Taloromyces funiculosus, Clononotachys rosea were applied to tomato plant growing soils. These fungi also decreased the soil EC values by 15-, 16-, 25 %, respectively, in the plant-free environment. The chlorophyll SPAD value of tomato plants grown in saline soils decreased from 22.65 to 0, however, the SPAD values of tomato plants grown in soils with Clononotachys rosea, Trichoderma sp., Taloromyces funiculosus were increased from 22.4-, 25.6-, 24.1 to 29.3-, 50.2-, and 24.5. Similar findings were also observed for the increase in the chlorophyll content of the tomato plant. The fungi mentioned above also contributed to the increase of soil macro (Ca, Mg, K, P) and micro (Fe, Cu, Zn, Mn) element contents, and to the improvement of soil available phosphorus amount (P2O5) with the increase in soil phosphorus content. Fungi inocula induced a statistically significant increase of soil micronutrient concentrations (p>0.05). Sodium (Na) concentration in saline soils did not change in inoculated-non-inoculated soils. These findings were interpreted as fungi inocula were not able to assimilate the salt from the soil, but they instead contributed to the release of macro and micro elements that were unavailable under saline conditions, possibly due to their metabolic activities. According to the results of soil analysis at the end of the experiment, it was revealed that the pH value was 7.72 in the control pots and 3.28 in the pots treated with Taloromyces funiculosus, and the EC value was 12.34 and 9.74 mS/m, respectively. Among the fungi studied, Taloromyces funiculosus was found to be more effective than other two fungi on decreasing soil salinity and increasing micronutrient availability to plants.