1. Home
  2. Browse by Author

Browsing by Author "Güzel, Elif Erdem"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 17
    Citation - Scopus: 15
    Alpha-lipoic acid may ameliorate testicular damage by targeting dox-induced altered antioxidant parameters, mitofusin-2 and apoptotic gene expression
    (Andrologia, 2021) Erdem Güzel, Elif; Kaya Tektemur, Nalan; Tektemur, Ahmet; 09.02. Department of Midwifery/ Ebelik Bölümü; 9. Faculty of Health Sciences / Sağlık Bilimleri Fakültesi; 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi
    In the study, the ameliorating effects of alfa lipoic acid (ALA) against doxorubicin-induced testicular apoptosis, oxidative stress and disrupted mitochondrial fusion were investigated in male rats. Rats were divided into four groups as control, doxorubicin (DOX), DOX + ALA and ALA. A single dose of 15 mg/kg DOX was administered i.p to the DOX and DOX + ALA groups. 50 mg/kg ALA was given to the DOX + ALA and ALA groups by oral gavage every other day. After 28 days, rat testes and serum samples were collected and analysed. Administration of DOX alone caused a decrease in body and relative testicular weights, seminiferous tubule diameter and germinal epithelium thickness, Johnsen's score and serum testosterone levels. DOX treatment led to severe testicular damage such as tubular degeneration, and atrophic tubules. Also, the activities of superoxide dismutase and glutathione peroxidase were reduced, while the level of malondialdehyde was increased in the testis. The mRNA levels of apoptotic-related genes (CASP3, TP53, BAX, BCL2) and apoptotic index were increased, while mitofusin-2 decreased. DOX caused an increase in CASP3 and a decrease in mitofusin-2 immunoreactivities. Treatment with ALA markedly improved all of DOX-induced biochemical, histochemical and molecular alterations in rat testis. Consequently, ALA has a therapeutic role in ameliorating DOX-induced testicular damage in rats.
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 5
    Citation - Scopus: 5
    King Oyster Mushroom, Pleurotus eryngii (Agaricomycetes), Extract Can Attenuate Doxorubicin-Induced Lung Damage by Inhibiting Oxidative Stress in Rats
    (International Journal of Medicinal Mushrooms, 2023) Erdem Güzel, Elif; Tektemur, Ahmet; Güzel, Elif Erdem; 09.02. Department of Midwifery/ Ebelik Bölümü; 9. Faculty of Health Sciences / Sağlık Bilimleri Fakültesi; 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi
    Doxorubicin (DOX), a broad spectrum chemotherapeutic, has toxic effects on healthy tissues. Mitochondrial processes and oxidative stress act in the DOX-induced toxicity, therefore antioxidant therapies are widely used. The study was aimed to evaluate the therapeutic potential of Pleurotus eryngii extract (PEE), an extract of a fungus with antioxidant properties, against DOX-induced lung damage. Rats were divided into Control, DOX, DOX + PEE, and PEE groups (n = 6). DOX was administered intraperitoneally in a single dose (10 mg/kg BW) and PE (200 mg/kg BW) was administered by oral gavage every other day for 21 days. Histopathological evaluations, immunohistochemical analyses, total oxidant status (TOS)/total antioxidant status (TAS) method, and quantitative real-time polymerase chain reaction (qRT-PCR) analysis were performed. DOX led to severe histopathological disruptions in rat lungs. Also, DOX remarkably increased the expression of dynamin 1 like (DRP1) and decreased the expression of mitofusin 1 (MFN1) and mitofusin 2 (MFN2) genes, which are related to mitochondrial dynamics. Moreover, DOX caused an increase in TOS/ TAS and 8-hydroxy-2-deoxyguanosine (8-OHdG) levels. On the other hand, PEE treatment remarkably normalized the histopathological findings, mitochondrial dynamics-related gene expressions, markers of oxidative stress, and DNA damage. The present study signs out that PEE can ameliorate the DOX-mediated lung toxicity and the antioxidant mechanism associated with mitochondrial dynamics can have a role in this potent therapeutic effect.