Browsing by Author "Gomha, Sobhi M."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Article Biological Evaluation and Molecular Docking Studies of Novel Aza-Acyclic Nucleosides as Putative Antimicrobial, Anticancer, and Antioxidant Agents(BMC, 2025) Alhilal, Mohammad; Alhilal, Suzan; Gomha, Sobhi M.; Farag, Basant; Sabancilar, Ilhan; Ouf, Salama A.This study aimed to synthesize new aza-acyclic nucleosides (aza-acyclovir) and evaluate the efficacy of these synthetic compounds as potential antimicrobial, anticancer, and antioxidant agents. We prepared two novel aza-acyclic nucleosides via two reactions. The first reaction involved trichloroisocyanuric acid and dibenzosulphonyl diethylamine, and the second reaction involved trichloroisocyanuric acid and diethanolamine. We then used one-dimensional nuclear magnetic resonance (NMR) spectroscopy, two-dimensional NMR spectroscopy, infrared spectroscopy, and mass spectrometry to determine the structures of the resulting compounds. In this regard, we first tested the antimicrobial activity of these compounds against various bacteria, including Bacillus cereus, B. subtilis, Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa, and against fungal pathogens, including Aspergillus fumigatus, Candida tropicalis, and Alternaria solani. Next, the precise mode for the interaction between synthesized aza-acyclic nucleosides and the target protein 8HQ5 was elucidate using molecular docking analysis. Subsequently, we tested the synthesized compounds for putative anticancer activity at different concentrations (i.e., 12.5, 25, 50, 100, and 200 mu g/mL) against A549 cell (Human epithelial lung carcinoma) and human umbilical vein endothelial cell (HUVEC) lines. In addition, compounds antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl-based and cupric reducing antioxidant capacity-based methods at different concentrations (i.e., 31.25, 62.5, 125, 250, and 500 mu g/mL). Results revealed that both aza-acyclic nucleosides inhibited both bacterial and fungal strains, although toxicity toward bacterial strains was generally greater than toward fungal strains. We also observed that the molecular docking results were consistent with the results of in vitro antimicrobial assessments. Further, both aza-cyclic nucleosides exhibited cytotoxic effects against both the A549 cell and HUVEC lines. Despite exhibiting lower radical scavenging activity than ascorbic acid (an antioxidant compound used as a standard), Compound 1 from the novel synthetic aza-acyclic nucleosides showed a higher reduction capacity, which was dose-dependent. Overall, we report newly synthesized compounds that show promising antimicrobial, anticancer, and antioxidant effects.Article Citation - WoS: 8Citation - Scopus: 8Eco-Friendly Synthesis of Thiazole Derivatives Using Recyclable Cross-Linked Chitosan Hydrogel Biocatalyst Under Ultrasonic Irradiation as Anti-Hepatocarcinogenic Agents(Mdpi, 2024) Gomha, Sobhi M.; Alhılal, Mohammad; Abd El-Ghany, Nahed A.; Ebaid, Manal S.; Abolibda, Tariq Z.; E. A. Zaki, Magdi; Alhilal, Mohammad; Mohamed, Nadia A.; 09.01. Department of Nursing / Hemşirelik Bölümü; 9. Faculty of Health Sciences / Sağlık Bilimleri Fakültesi; 01. Mardin Artuklu University / Mardin Artuklu ÜniversitesiIn the current study, pyromellitimide benzoyl thiourea cross-linked chitosan (PIBTU-CS) hydrogel, was evaluated as a green biocatalyst for the efficient synthesis of novel thiazole derivatives. The PIBTU-CS hydrogel showcased key advantages, such as an expanded surface area and superior thermal stability, establishing it as a potent eco-friendly catalyst. By employing PIBTU-CS alongside ultrasonic irradiation, we successfully synthesized a series of novel thiazoles through the reaction of 2-(4-((2-carbamothioylhydrazineylidene)methyl)phenoxy)-N-(4-chlorophenyl)acetamide with a variety of hydrazonoyl halides (6a-f) and alpha-haloketones (8a-c or 10a,b). A comparative analysis with TEA revealed that PIBTU-CS hydrogel consistently delivered significantly higher yields. This synthetic strategy provided several benefits, including mild reaction conditions, reduced reaction times, and consistently high yields. The robustness of PIBTU-CS was further underscored by its ability to be reused multiple times without a substantial reduction in catalytic efficiency. The structures of the synthesized thiazole derivatives were meticulously characterized using a range of analytical techniques, including IR, 1H-NMR, 13C-NMR, and mass spectrometry (MS), confirming their successful formation. These results underscore the potential of PIBTU-CS hydrogel as a sustainable and recyclable catalyst for the synthesis of heterocyclic compounds. Additionally, all synthesized products were tested for their anticancer activity against HepG2-1 cells, with several new compounds exhibiting good anticancer effects.Article Citation - WoS: 25Citation - Scopus: 25Novel thiadiazole-thiazole hybrids: synthesis, molecular docking, and cytotoxicity evaluation against liver cancer cell lines(Taylor & Francis Online, 2022) Aljohani, Ghadah F.; Alhılal, Mohammad; Abolibda, Tariq Z.; Alhılal, Suzan; Alhilal, Mohammad; Al-Humaidi, Jehan Y.; Alhilal, Suzan; Ahmed, Hoda A.; Gomha, Sobhi M.; 09.01. Department of Nursing / Hemşirelik Bölümü; 21.02. Department of Medical Services and Techniques / Tıbbi Hizmetler ve Teknikleri Bölümü; 9. Faculty of Health Sciences / Sağlık Bilimleri Fakültesi; 21. Vocational School of Health Services / Sağlık Hizmetleri Meslek Yüksekokulu; 01. Mardin Artuklu University / Mardin Artuklu ÜniversitesiOne of the worst diseases, cancer claims millions of lives each year throughout the world, necessitating the creation of novel treatments. In this study, we designed a novel series of 1,3,4-thiadiazoles through the reaction of 2-(4-methyl-2-(2-(1-phenylethylidene)hydrazineyl)thiazole-5-carbonyl)-N-phenylhydrazine-1-carbothioamide (3) with the proper hydrazonoyl halides. Using the MTT assay, the newly synthesized thiadiazoles' growth-inhibitory potential against the liver cancer cell line HepG2-1 was assessed. In comparison to the standard drug doxorubicin (IC50 = 0.72 ± 0.52 µM), the results showed that two compounds, 16b and 21 (IC50 = 0.69 ± 0.41 and 1.82 ± 0.94 µM, respectively) had promising anticancer activity. The structural activity relationship (SAR) was investigated. In addition, molecular docking analysis onto quinone oxidoreductase2 (NQO2) receptor (PDB: 4ZVM) was investigated against the potent compounds to examine the reliability of the in vitro results. The newly prepared thiadiazole-thiazole hybrids are therefore regarded as potent anticancer drugs.Article Citation - WoS: 9Citation - Scopus: 8Synthesis and biological evaluation of new aza-acyclic nucleosides and their hydrogen complexes from indole(SpringerLink, 2022) Alhilal, Suzan; Alhılal, Suzan; Alhilal, Mohammad; Alhılal, Mohammad; Gomha, Sobhi M.; Ouf, Salama A.; 09.01. Department of Nursing / Hemşirelik Bölümü; 21.02. Department of Medical Services and Techniques / Tıbbi Hizmetler ve Teknikleri Bölümü; 9. Faculty of Health Sciences / Sağlık Bilimleri Fakültesi; 21. Vocational School of Health Services / Sağlık Hizmetleri Meslek Yüksekokulu; 01. Mardin Artuklu University / Mardin Artuklu ÜniversitesiThree novel aza-acyclic nucleosides and two hydrogen complexes were isolated by flash chromatography after being produced in a reaction between indole and dibenzosulfonyl diethylamine (which had previously been prepared) in the presence of sodium and absolute ethanol as a basic catalyst. Structures of new compounds and complexes were determined by 1D-NMR: 1H NMR, 13C NMR, DEPT-135, 2D-NMR: COSY, HMQC, HSQC, HMBC, IR, and MS spectroscopy. The synthesized compounds were evaluated against a wide range of microorganisms, including Gram-positive and Gram-negative bacteria as well as fungal strains. These compounds showed good biological activity.Article Citation - WoS: 6Citation - Scopus: 5Synthesis of Novel Acyclic Nucleoside Analogue Starting From 6-Aminouracil as Potent Antimicrobial Agent(Polycyclic Aromatic Compounds, 2021) Alhilal, Mohammad; Alhılal, Mohammad; Sulaiman, Yaser A. M.; Alhılal, Suzan; Alhilal, Suzan; Gomha, Sobhi M.; Ouf, Salama A.; 09.01. Department of Nursing / Hemşirelik Bölümü; 21.02. Department of Medical Services and Techniques / Tıbbi Hizmetler ve Teknikleri Bölümü; 9. Faculty of Health Sciences / Sağlık Bilimleri Fakültesi; 21. Vocational School of Health Services / Sağlık Hizmetleri Meslek Yüksekokulu; 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi6-Aminouracil and 2-bromoethyl amine were prepared, as starting materials to be introduced as an alkylating reagent with sodium carbonate as a catalyst. Acyclic nucleoside was prepared for the first time, the expected structure of the final new compound 3 was determined based on IR, NMR, and mass spectroscopy, with safe and mild reaction conditions. The synthesized acyclic nucleoside has a potent and efficient antimicrobial activity compared to reference drugs particularly as an antibacterial agent, and can be used as an alternative to the commonly used antibiotics after performing the necessary biological research for its validation.