Browsing by Author "Kavak, Deniz Evrim"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Ecofriendly Synthesis of Silver Nanoparticles Using Ananas comosus Fruit Peels: Anticancer and Antimicrobial Activities(Hindawi, 2021) Baran, Ayşe; Keskin, Cumali; Baran, Mehmet Fırat; Huseynova, Irada; Khalilov, Rovshan; Eftekhari, Aziz; Irtegun-Kandemir, Sevgi; Kavak, Deniz EvrimMetallic nanoparticles are valuable materials and have a range of uses. Nanoparticles synthesized from plant wastes by environment-friendly methods have attracted the attention of researchers in recent years. Also, the advantages of biological resources and synthesis methods are attracting attention. In this study, silver nanoparticles were synthesized from Ananas comosus fruit peels using ecofriendly method steps. The characterization of the particles obtained was determined by using a UV-visible spectrophotometer (UV-Vis.), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction diffractometer (XRD), Fourier scanning electron microscope (FESEM), and transmission electron microscopy (TEM). The nanoparticles showed maximum absorbance at 463 nm, measuring 11.61 in crystal nanosize, and presented spherical in appearance. An antimicrobial activity test was determined with the minimum inhibition concentration (MIC) method. The nanoparticles showed promising inhibitory activity on the Gram-positive and Gram-negative pathogen microorganisms (Escherichia coli ATCC25922, Staphylococcus aureus ATCC29213, Bacillus subtilis ATCC11774, Pseudomonas aeruginosa ATCC27833 bacteria, and Candida albicans yeast) at low concentrations. The cytotoxic and growth inhibitory effects of silver nanoparticles on different cancer cell lines were examined via the MTT assay. © 2021 Ayşe Baran et al.Article The M1/M2 Macrophage Polarization and Hepatoprotective Activity of Quercetin in Cyclophosphamide-Induced Experimental Liver Toxicity(Wiley, 2025) Seker, Ugur; Uyar, Emre; Gokdemir, Gul Sahika; Kavak, Deniz Evrim; Irtegun-Kandemir, SevgiBackground: Chemotherapy drugs may lead to hepatic injury, which is considered one of the limitations of these drugs. Objectives: The aim of this study was to evaluate the effect of quercetin (QUE) on M1/M2 macrophage polarization and hepatoprotective effect in cyclophosphamide (CTX)-induced liver toxicity. Methods: Twenty-four mice were divided into four groups (Control, QUE, CTX, CTX + QUE). The CTX and CTX + QUE groups received 200 mg/kg CTX. The animals in the QUE and CTX + QUE groups received 50 mg/kg QUE. All animals were sacrificed, and serum and liver samples were used for laboratory analyses. Results: Examinations indicated that CTX exposure led to disruption of liver functions and morphological degenerations. Tissue pro-apoptotic Bax and caspase 3, pro-inflammatory TNF-alpha and IL-1 beta, transcription factor NF-kappa B, and M1 macrophage polarization marker CD86 were upregulated significant (p < 0.05) in this group. In addition, CTX exposure led to significantly (p < 0.05) upregulation of the Bax/Bcl-2 mRNA ratio and DNA fragmentations. The PCNA-positive hepatic cell ratio and anti-apoptotic Bcl-2 expression are remarkably suppressed (p < 0.05). Immunohistochemical analyses are also indicated that M2 macrophage polarization marker CD163 is slightly but remarkably (p < 0.05) downregulated in the CTX group compared to the Control and QUE groups. The morphological and biochemical disruptions were alleviated in QUE-treated animals in the CTX + QUE group. Liver function test results, apoptosis, inflammatory, transcription factor NF-kappa B, regeneration/proliferation, and apoptotic index results in this group were similar (p > 0.05) to the control and QUE groups. The M1 cell surface marker expression of CD86 is significantly (p < 0.05) downregulated, and M2 macrophage polarization marker expression of CD163 is upregulated significantly (p < 0.05) compared to the CTX group. Conclusions: This study indicates that QUE has the potential to downregulate CTX-induced hepatic injury and regulate M1/M2 macrophage polarization to the M2 side, which indirectly demonstrates activation of anti-inflammatory signalling and tissue repair.Article The nephroprotective effect of Quercetin in Cyclophosphamide-induced renal toxicity might be associated with MAPK/ERK and NF-κB signal modulation activity(Taylor & Francis, 2024) Şeker, Uğur; Kavak, Deniz Evrim; Dokumacı, Fatma Zehra; Kızıldağ, Sefa; İrtegün Kandemir, SevgiThe present study aimed to examine the protective effect of quercetin (QUE) on cyclophosphamide (CTX)-induced nephrotoxicity. For that purpose, 24 mice were divided into four groups (Control, QUE, CTX, and CTX + QUE). The CTX and CTX + QUE groups received 200 mg/kg of cyclophosphamide on the 1st and 7th days. The QUE and CTX + QUE groups were treated with 50 mg/kg of quercetin daily for 14 days. At the end of the experiment, the animals were sacrificed, and kidney samples were analyzed. The results indicated that CTX leads to severe morphological degenerations and disruption in renal function. Serum BUN, Creatinine, Uric acid, tissue Bax, Caspase 3, TNF-α and IL-1β expression levels were upregulated in the CTX group compared to Control and QUE groups (p < 0.05). Although MAPK/ERK phosphorylation level is not affected in CTX group, there was a significant increase in CTX + QUE group (p < 0.05), but the NF-κB was significantly suppressed in this group (p < 0.01). The RT-qPCR results showed that the cyt-c and the Bax/Bcl-2 ratio mRNA expression folds were upregulated in the CTX group (p < 0.01), which was downregulated in the CTX + QUE group. However, there was a significant difference in the CTX + QUE group compared to the Control and QUE groups (p < 0.01). The findings showed that administering quercetin along with cyclophosphamide alleviated renal injury by regulating apoptotic and inflammatory expression. Moreover, the administration of quercetin and cyclophosphamide could synergistically improve renal function test results, and activate cellular responses, which upmodulate MAPK/ERK phosphorylation and suppression of NF-κB.