Browsing by Author "Yildiz, Abdulnasir"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article Classification and analysis of epileptic EEG recordings using convolutional neural network and class activation mapping(2021) Yildiz, Abdulnasir; Zan, Hasan; Said, Sherif; Zan, HasanElectrical bio-signals have the potential to be used in different applications due to their hidden nature and their ability to facilitate liveness detection. This paper investigates the feasibility of using the Convolutional Neural Network (CNN) to classify and analyze electroencephalogram (EEG) data with their time-frequency representations and class activation mapping (CAM) to detect epilepsy disease. Several types of pre-trained CNNs are employed for a multi-class classification task (AlexNet, GoogLeNet, ResNet-18, and ResNet-50) and their results are compared. Also, a novel convolutional neural network architecture comprised of two horizontally concatenated GoogLeNets is proposed with two inputs scalograms and spectrogram of the eplictic EEG signal. Four segment lengths (4097, 2048, 1024, and 512 sampling points) with three time-frequency representations (short-time Fourier, Wavelet, and Hilbert-Huang transform) are statistically evaluated. The dataset used in this research is collected at the University of Bonn. The dataset is reorganized as normal, interictal, and ictal. The maximum achieved accuracies for 4097, 2048, 1024, and 512 sampling points are 100 %, 100 %, 100 %, and 99.5 % respectively. The CAM method is used to analyze discriminative regions of time-frequency representations of EEG segments and networks' decisions. This method showed CNN models used different time and frequency regions of input images for each class with correct and incorrect predictions.Conference Object Classification of Eeg Signals Using Hilbert-Huang Transform-Based Deep Neural Networks(IEEE, 2019) Zan, Hasan; Yildiz, Abdulnasir; Ozerdem, Mehmet Sirac; Zan, HasanEpilepsy is one of the most common neurologic disease. Electroencephalogram (EEG) contains physiologic and pathological information related human nervous system. EEG signals used in this study are obtained from Bonn University, Department of Epileptology EEG database. Original database has five subsets (A, B, C, D, E). Data have been reorganized into three groups which are healthy (AB), interictal (CD) and ictal EEG signals. Furthermore, in order to examine effect of signal length on classification performance, three different lengths are used. Hilbert-Huang transform is applied to the signals and they are represented as image files. Then, generated images are fed into deep neural networks with five different structures for classification. Accuracy is calculated for all cases to asses performance of proposed method. it is clear that successful results could be obtained using Hilbert-Huang transform along with deep learning networks.Article Engine Fault Detection by Sound Analysis and Machine Learning(Mdpi, 2024) Akbalik, Ferit; Yildiz, Abdulnasir; Ertugrul, Omer Faruk; Zan, Hasan; Zan, HasanTraditional vehicle fault diagnosis methods rely heavily on the expertise of mechanics or diagnostic tools available at service centers, which can be costly, time-consuming, and may not always provide accurate results. This study presents a comprehensive vehicle fault diagnosis framework, which utilized Mel-Frequency Cepstral Coefficients (MFCCs), Discrete Wavelet Transform (DWT)-based features, and the Extreme Learning Machine (ELM) classifier. To address the limitations of previous works, the proposed framework leverages a large, diverse dataset encompassing various vehicle models and real-world operating conditions. Significantly improved robustness and generalizability of the fault diagnosis system were achieved. The results of the experiments demonstrate the superiority of the MFCC-based features combined with the ELM classifier, achieving the highest performance metrics in terms of accuracy, precision, recall, F1-score, macro F1-score, and weighted F1-score, which are 92.17%, 92.24%, 92.22%, 92.10%, and 92.06%, respectively. Slightly lower performance was obtained while employing the DWT-based features compared to employing MFCC-based features. Additionally, frequency analysis was conducted to identify specific frequency bins, which are the most indicative of different fault types in providing valuable guidance for future diagnostic efforts. Overall, the proposed framework provides a reliable and practical solution for accurate vehicle fault detection, paving the way for future advancements in automotive diagnostics.Article Enhancing Vehicle Fault Diagnosis Through Multi-View Sound Analysis: Integrating Scalograms and Spectrograms in a Deep Learning Framework(Springer London Ltd, 2025) Akbalik, Ferit; Yildiz, Abdulnasir; Ertugrul, Omer Faruk; Zan, Hasan; Zan, HasanThis study presents a comprehensive framework for vehicle fault diagnosis using engine sound signals, leveraging deep learning models and a multi-view approach. Traditional methods for vehicle fault diagnosis often rely on the expertise of mechanics or diagnostic tools, which can be costly, time-consuming, and may not always provide accurate results. To address these limitations, we propose CarFaultNet, a multi-view model that processes both scalograms and spectrograms simultaneously to capture complementary information from these time-frequency representations. Our approach incorporates transfer learning with pretrained convolutional neural networks, including AlexNet, GoogLeNet, ShuffleNet, SqueezeNet, and MobileNet v2, as well as CarFaultNet, which combines two MobileNet networks. The results demonstrate that CarFaultNet outperforms traditional machine learning methods and single-view deep learning models, achieving a precision of 95.32%, recall of 94.83%, F1-score of 94.99%, and accuracy of 95.00%. Class activation mapping visualizations provide valuable insights into the model's decision-making process, highlighting the regions of the input images that are most influential for the classification of different vehicle faults. By leveraging a large, diverse dataset encompassing various vehicle models and real-world operating conditions, our approach addresses the drawbacks of previous studies and demonstrates the potential of deep learning for practical and effective vehicle fault diagnosis.