Uygulama - Araştırma Merkezleri ve Koordinatörlükler Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12514/3599
Browse
Browsing Uygulama - Araştırma Merkezleri ve Koordinatörlükler Koleksiyonu by Department "MAÜ, Rektörlüğe Bağlı Bölümler, Uygulama - Araştırma Merkezleri ve Koordinatörlükler"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Antioxidant and Antimicrobial Capacity of Quinic Acid(Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2022) Ercan, Leyla; Doğru, MehmetRecently, agents with natural antioxidant and antimicrobial properties have been popularly studied. For this purpose, phenolic compounds, terpenes, and organic acids are examined for their antioxidant and antimicrobial properties. Of these, organic acids are increasingly being used in pharmacology, medicine, food, and industry. Quinic acid is a natural organic compound found in many edible fruits and plants. In this study, the antioxidant effect of quinic acid, which has the structure of cyclohexane carboxylic acid, was determined in vitro using seven different methods (DPPH, ABTS, CUPRAC, DMPD, FRAP, Fe3+ reduction, and Total antioxidant method). In addition, its antimicrobial effect on fungi (C. albicans), gram-positive bacteria (S. aureus, S. pyogenes), and gram-negative bacteria (E. coli, K. pneumoniae, and P. aeruginosa) were determined by the disk diffusion method. As a result, it was found that quinic acid has broad-spectrum antimicrobial properties, but its antioxidant properties are too low to be highlighted. While its antimicrobial activity was quite good, especially on K. pneumoniae E. coli, S. aureus, S. Pyogenes, and P. aeruginosa, it did not show any effect on C. albicans. Although the antioxidant property of quinic acid is low, it showed more antioxidant properties in the DMPD method, which is one of these methods, because it dissolves very well in water.Article Citation - WoS: 12Citation - Scopus: 14Prediction of Aspergillus parasiticus inhibition and aflatoxin mitigation in red pepper flakes treated by pulsed electric field treatment using machine learning and neural networks(Elsevier, 2022) Akdemir Evrendilek, Gulsun; Bulut, Nurullah; Atmaca, Bahar; Uzuner, SibelPresence of aflatoxins in agricultural products is a worldwide problem. Because of their high heat stability and resistance to most of the food processing technologies, aflatoxin degradation is still a big challenge. Thus, efficacy of pulsed electric fields (PEF) by energies ranging from 0.97 to 17.28 J was tested to determine changes in quality properties in red pepper flakes, mitigation of aflatoxins, inactivation of aflatoxin producing Aspergillus parasiticus, reduction in aflatoxin mutagenity, and modelling of A. parasiticus inactivation in addition to aflatoxin mitigation. Maximum inactivation rate of 64.37 % with 17.28 J was encountered on the mean initial A. parasiticus count. A 99.88, 99.47, 97.75, and 99.58 % reductions were obtained on the mean initial AfG1, AfG2, AfB1, and AfB2 concentrations. PEF treated samples by 0.97, 1.36, 5.76, and 17.28 J at 1 μg/plate, 0.97, 1.92, 7.78, 10.80 J at 10 μg/plate, and 0.97, 1.92, 2.92, 4.08, 5.76, 4.86, 6.80, 9.60, 10.80, and 10.89 J at 100 μg/plate were not mutagenic. Modelling with gradient boosting regression tree (GBRT), random forest regression (RFR), and artificial neural network (ANN) provided the lowest RMSE and highest R2 value for GBRT model for the predicted inactivation of A. parasiticus, whereas ANN model provided the lowest RMSE and highest R2 for predicted mitigation of AfG1, AfB1, and AfB2. PEF treatment possess a viable alternative for aflatoxin degradation with reduced mutagenity and without adverse effect on quality properties of red pepper flakes.