Derin Öğrenme Mimarilerini Kullanarak Katarakt Tespiti

dc.contributor.author Ağalday, Fatih
dc.contributor.author Çınar, Ahmet
dc.contributor.other 17.01. Department of Computer Technologies / Bilgisayar Teknolojileri Bölümü
dc.contributor.other 17. Vocational Higher School / Meslek Yüksekokulu
dc.contributor.other 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi
dc.date.accessioned 2023-12-14T10:59:07Z
dc.date.available 2023-12-14T10:59:07Z
dc.date.issued 2021
dc.description.abstract İnsanın yaşam kalitesini olumsuz olarak etkileyen görme kayıplarını daha erken bir dönemde teşhis etmek önemlidir. İnsan yaşının ilerlemesi ile birlikte görme bozuklukları ve bazen tamamen görme kaybına neden olmaktadır. Gözün anatomik yapısında bulunan anormallikler göz hastalıklarının erken dönemlerinde göz yapısına ait görsellerle de tespit edilebilmektedir. Katarat dünyada milyonlarca insanı etkileyen görme bozukluğunun en önemli nedenidir. Otomatik tanı sistemleri ile sağlık hizmeti kullanımı hafifleyerek uzmanlara yardımcı olmayı amaçlamaktadır. Bu makalede renkli fundus görüntüler kullanılarak katarat hastalığına otomatik tanı sistemi ele alınmıştır. Katarat hastalığının otomatik tanımlanması için evrişimli sinir ağı (CNN) ve derin artık ağ (DRN) kullanılarak sınıflandırma yöntemi kullanılmıştır. Veri seti 5000 hastanın sağ ve sol gözlerine ait renkli fundus fotoğrafları ve doktorların her bir hastanın sağ ve sol gözüne konulmuş teşhisler için anahtar kelimler ile yapılandırılmış bir veri tabanıdır. Bu veri seti gerçek yaşamda hasta gruplarını temsil etmektedir. Çinli bir şirket olan Shanggong Medical Technology Co., Ltd. Şirketi tarafından farklı hastane ve tıp merkezlerinden elde edilen veriler toplanmıştır. Veri setinde hastalar 8 farklı etikete sınıflandırma yapılmıştır. Renkli fundus görüntüler sayesinde farklı evrelere ait katarat semptomlarına ait özellikler bulunmaktadır. Önerilen otomatik tanı sistemi güncel sınıflandırma sistemlerine oranla daha başarılı olduğu görülmektedir. DRN yönteminin CNN yöntemine göre doğruluk oranına göre daha yüksektir. CNN modelinde doğruluk oranı %89 civarında iken DRN modelinde doğruluk oranı %95 olduğu görülmektedir. en_US
dc.description.abstract It is important to diagnose vision loss, which negatively affects the quality of life of people, at an earlier stage. With the advancement of human age, it causes visual disturbances and sometimes complete vision loss. Abnormalities in the anatomical structure of the eye can also be detected with visuals of the eye structure in the early stages of eye diseases. Cataracts are the most important cause of visual impairment affecting millions of people around the world. It aims to help experts by reducing the use of health services with automatic diagnosis systems. In this article, the automatic diagnosis system for catarrhal disease using color fundus images is discussed. Classification method using convolutional neural network (CNN) and deep residual network (DRN) was used for automatic identification of cataract disease. The dataset is a structured database with color fundus photographs of 5000 patients' right and left eyes and keywords for doctors to diagnose each patient's right and left eyes. This dataset represents real-life patient groups. Shanggong Medical Technology Co., Ltd., a Chinese company. Data from different hospitals and medical centers were collected by the company. In the data set, patients were classified into 8 different labels. Thanks to the color fundus images, there are features of cataract symptoms of different stages. It is seen that the proposed automatic diagnosis system is more successful than the current classification systems. The accuracy rate of the DRN method is higher than the CNN method. While the accuracy rate in the CNN model is around 89%, the accuracy rate in the DNN model is 95%. en_US
dc.identifier.citation AĞALDAY, F., & ÇINAR, A. (2021). Derin Öğrenme Mimarilerini Kullanarak Katarakt Tespiti. Avrupa Bilim Ve Teknoloji Dergisi(28), 1428-1433. https://doi.org/10.31590/ejosat.1012694 en_US
dc.identifier.doi 10.31590/ejosat.1012694
dc.identifier.uri https://doi.org/10.31590/ejosat.1012694
dc.identifier.uri https://hdl.handle.net/20.500.12514/4698
dc.language.iso tr en_US
dc.publisher Avrupa Bilim ve Teknoloji Dergisi en_US
dc.relation.ispartof 1st International Conference on Applied Engineering and Natural Sciences ICAENS 2021, November 1-3, 2021 en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Derin Öğrenme en_US
dc.subject Evrişimsel Sinir Ağları en_US
dc.subject Derin Kalıntı Ağı en_US
dc.subject Sınıflandırma en_US
dc.subject Katarakt en_US
dc.title Derin Öğrenme Mimarilerini Kullanarak Katarakt Tespiti en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0002-2635-0661
gdc.author.institutional Ağalday, Fatih
gdc.author.institutional Ağalday, Muhammed Fatih
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department MAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümü en_US
gdc.description.endpage 1433 en_US
gdc.description.issue 28 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 1428 en_US
gdc.openalex.fwci 0.142
relation.isAuthorOfPublication 03c3c808-a70c-48db-92aa-600eee714b08
relation.isAuthorOfPublication.latestForDiscovery 03c3c808-a70c-48db-92aa-600eee714b08
relation.isOrgUnitOfPublication 6c65c5ec-c935-4cd9-8c61-2548fe175ba8
relation.isOrgUnitOfPublication 7ac23c9e-1f47-4697-a5c8-3fe0c2bfcdb2
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery 6c65c5ec-c935-4cd9-8c61-2548fe175ba8

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: