MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Modeling Automobile Sales in Turkiye with Regression-Based Machine Learning Algorithms

dc.authorid0000-0003-3030-8690
dc.authorwosidJSL-6391-2023
dc.contributor.authorBabaoglu,Merve
dc.contributor.authorCoşkunçay,Ahmet
dc.contributor.authorAydın,Tolga
dc.date.accessioned2023-12-14T09:44:51Z
dc.date.available2023-12-14T09:44:51Z
dc.date.issued2023
dc.departmentMAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümüen_US
dc.description.abstractThe automobile sector is the locomotive of industrialized countries. The employment opportunities it creates are of great value because of its interconnectedness with other industries and the value it adds. Demand forecasting studies in such an important sector are one of the main drivers for the provision of raw materials and services needed in the future. In this study, 10 independent variables are used that directly or indirectly affect the level of car sales, which is our dependent variable. These variables are gross domestic product, real sector confidence index, capital expenditures, household consumption expenditures, inflation rate, consumer confidence index, percentage of one-year term deposits, and oil barrel, gold, and dollar prices. The dataset used consists of annual data between 2000 and 2021. To examine the sales forecast model, two variables that affect minimum sales are first extracted from the model using the least squares method. Linear Regression, Decision Tree, Random Forest, Ridge, AdaBoost, Elastic-net, and Lasso Regression algorithms are applied to build a predictive model with these variables. The Mean Squared Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2) are used to compare the performance of the predictive models. This study proposes an approach for sectors affected directly or indirectly by automotive sales to gain foresight on this issue.en_US
dc.description.citationBABAOĞLU, M., COŞKUNÇAY, A., & AYDIN, T. (2023). Modeling Automobile Sales in Turkiye with Regression-Based Machine Learning Algorithms. Journal of Data Applications(1), 19-33. https://doi.org/10.26650/JODA.1242645en_US
dc.identifier.doi10.26650/JODA.1242645
dc.identifier.endpage33en_US
dc.identifier.issue1en_US
dc.identifier.startpage19en_US
dc.identifier.urihttps://doi.org/10.26650/JODA.1242645
dc.identifier.urihttps://hdl.handle.net/20.500.12514/4688
dc.identifier.volume2023en_US
dc.institutionauthorBabaoglu, Merve
dc.institutionauthorCoşkunçay, Ahmet
dc.institutionauthorAydın, Tolga
dc.language.isoenen_US
dc.publisherİstanbul Üniversitesien_US
dc.relation.ispartofJournal of Data Applicationsen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAutomobile Salesen_US
dc.subjectRegressionen_US
dc.subjectDemand Forecastingen_US
dc.titleModeling Automobile Sales in Turkiye with Regression-Based Machine Learning Algorithmsen_US
dc.typeArticleen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.26650-JODA.1242645-2918392.pdf
Size:
723.1 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin/Full Text

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: