Modeling Automobile Sales in Turkiye with Regression-Based Machine Learning Algorithms

dc.contributor.author Babaoğlu, Merve
dc.contributor.author Coşkunçay,Ahmet
dc.contributor.author Aydın,Tolga
dc.contributor.other 17.01. Department of Computer Technologies / Bilgisayar Teknolojileri Bölümü
dc.contributor.other 17. Vocational Higher School / Meslek Yüksekokulu
dc.contributor.other 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi
dc.date.accessioned 2023-12-14T09:44:51Z
dc.date.available 2023-12-14T09:44:51Z
dc.date.issued 2023
dc.description.abstract The automobile sector is the locomotive of industrialized countries. The employment opportunities it creates are of great value because of its interconnectedness with other industries and the value it adds. Demand forecasting studies in such an important sector are one of the main drivers for the provision of raw materials and services needed in the future. In this study, 10 independent variables are used that directly or indirectly affect the level of car sales, which is our dependent variable. These variables are gross domestic product, real sector confidence index, capital expenditures, household consumption expenditures, inflation rate, consumer confidence index, percentage of one-year term deposits, and oil barrel, gold, and dollar prices. The dataset used consists of annual data between 2000 and 2021. To examine the sales forecast model, two variables that affect minimum sales are first extracted from the model using the least squares method. Linear Regression, Decision Tree, Random Forest, Ridge, AdaBoost, Elastic-net, and Lasso Regression algorithms are applied to build a predictive model with these variables. The Mean Squared Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2) are used to compare the performance of the predictive models. This study proposes an approach for sectors affected directly or indirectly by automotive sales to gain foresight on this issue. en_US
dc.identifier.citation BABAOĞLU, M., COŞKUNÇAY, A., & AYDIN, T. (2023). Modeling Automobile Sales in Turkiye with Regression-Based Machine Learning Algorithms. Journal of Data Applications(1), 19-33. https://doi.org/10.26650/JODA.1242645 en_US
dc.identifier.doi 10.26650/JODA.1242645
dc.identifier.uri https://doi.org/10.26650/JODA.1242645
dc.identifier.uri https://hdl.handle.net/20.500.12514/4688
dc.language.iso en en_US
dc.publisher İstanbul Üniversitesi en_US
dc.relation.ispartof Journal of Data Applications en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Automobile Sales en_US
dc.subject Regression en_US
dc.subject Demand Forecasting en_US
dc.title Modeling Automobile Sales in Turkiye with Regression-Based Machine Learning Algorithms en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id 0000-0003-3030-8690
gdc.author.institutional Babaoglu, Merve
gdc.author.institutional Coşkunçay, Ahmet
gdc.author.institutional Aydın, Tolga
gdc.author.wosid JSL-6391-2023
gdc.description.department MAÜ, Meslek Yüksekokulları, Mardin Meslek Yüksekokulu, Bilgisayar Teknolojileri Bölümü en_US
gdc.description.endpage 33 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.startpage 19 en_US
gdc.description.volume 2023 en_US
relation.isAuthorOfPublication c3afaa01-6899-4982-9069-829f3a665909
relation.isAuthorOfPublication.latestForDiscovery c3afaa01-6899-4982-9069-829f3a665909
relation.isOrgUnitOfPublication 6c65c5ec-c935-4cd9-8c61-2548fe175ba8
relation.isOrgUnitOfPublication 7ac23c9e-1f47-4697-a5c8-3fe0c2bfcdb2
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery 6c65c5ec-c935-4cd9-8c61-2548fe175ba8

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
10.26650-JODA.1242645-2918392.pdf
Size:
723.1 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin/Full Text

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: