MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Belge benzerliği sonuçlarının nsga-ıı ile çok amaçlı optimizasyonu

dc.authoridhttps://orcid.org/0000-0002-4320-0198
dc.contributor.authorHüseyin Ahmetoğlu
dc.date.accessioned2019-08-30T09:02:59Z
dc.date.available2019-08-30T09:02:59Z
dc.date.issued2018
dc.departmentMAÜ, Meslek Yüksekokulları, Midyat Meslek Yüksekokulu, Bilgisayar Programcılığı Bölümüen_US
dc.description.abstractSınıflandırma algoritmalarının başarı performanslarının artırımı, veri madenciliğinin önemli amaçları arasındadır. Bu tez çalışmasında, veri madenciliği sınıflandırma başarısının sezgisel yöntemlerle arttırılması incelenmiştir. Sınıflandırmada kullanılan eğitim veri seti hem benzerlik hesap sonuçları yönünden hem de sınıflandırma yeteneği yönünden optimize edilmiştir. Aynı sınıfta olan vektörlerin benzerlik sonuçlarının maksimize edilmesi, aynı zamanda farklı sınıftaki vektörlerin benzerlik sonuçlarının minimize edilmesi amaçlanmıştır. Bu çelişen iki durum için çok amaçlı sezgisel yöntemlerden olan, Sıralı Seçkin Bastırılamayan Genetik Algoritma (NSGA II) kullanılmıştır. Hatalı sınıflandırma oranlarının, optimizasyonun her iterasyonunda sıfıra daha çok yaklaştırılması hedeflenmiştir. Bu çalışmada veri madenciliğinin tüm aşamalarının sırayla gerçekleştirilmesine özen gösterilmiştir. Ham veriler işlenerek öznitelikler çıkarılmıştır. Boyut azaltma işlemleri için ise Temel Bileşen Analizi (PCA) kullanılmıştır. Veri setleri üzerinde K En Yakın Komşu Algoritması (KNN) kullanılarak yalın haldeki sınıflandırma başarıları ile optimizasyon sonrası sınıflandırma başarıları karşılaştırılmıştır. Optimizasyonun, eğitim veri setinin sınıflandırma yeteneğini arttırdığı görülmüştür. Optimize edilmiş veriler, eğitim kümesi olarak kullanıldığında sınıflandırma başarısında artış gözlemlenmiştir.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12514/1881
dc.language.isotren_US
dc.relation.publicationcategoryGazete Makalesi - Ulusalen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleBelge benzerliği sonuçlarının nsga-ıı ile çok amaçlı optimizasyonuen_US
dc.typeMaster Thesisen_US
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
503872.pdf
Size:
2.78 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: