Browsing by Author "Ahmetoğlu, Hüseyin"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Conference Object Analysis of Feature Selection Approaches in Large Scale Cyber Intelligence Data with Deep Learning(IEEE, 2020) Ahmetoğlu, Hüseyin; Daş, ResulAğ sistemlerinin her geçen gün katlanarak büyüyen boyutu, saldırı yoğunluğunun ve türlerinin de artmasına neden olmaktadır. Ağ içerisinde bu saldırıların tespiti, ağ güvenliğinin başlıca problemlerindendir. Saldırı tespit sistemleri, bu problemle başa çıkmak için geliştirilen bir yaklaşımdır. Saldırı tespit sistemlerinde işlenen büyük boyutlu veriler beraberinde karmaşıklığ da getirmektedir. Bu çalışma, veri kümelerindeki karmaşıklığı gidermek için 6 farklı öznitelik seçme algoritmasının incelenmesini ve bu algoritmaların sınıflandırma modellerindeki performanslarının karşılaştırılmasını içermektedir. Bu performanslar, açık erişimli olarak sunulan CICIDS2017 veri seti üzerinde uygulanan Derin Öğrenme modelleri ile analiz edilmiştir. Bu işlem sırasında algoritmaların test sonuçları hem kendi aralarında hem de veri setinin orijinal haliyle karşılaştırılmıştır. Uygulama sırasında veri kümesindeki öznitelik sayıları çoklu sınıflandırma için 78’den 25’e, ikili sınıflandırma için 8’e düşürülmüştür. Elde edilen başarı oranları bütün uygulamalarda %92’nin üzerindedir.Article Makine Öğrenmesi Yöntemleri Kullanarak Web Uygulama Saldırılarının Tespitinde Genetik Öznitelik Seçimi Yaklaşımı(2021) Ahmetoğlu, Hüseyin; Daş, Resulİnternet üzerindeki uygulamalar kodlama kaynaklı bir takım güvenlik endişelerini barındırırlar. Zayıflıklar veya güvenlik açıkları, suçluların hassas verileri çalmak için veri tabanlarına doğrudan ve genel erişim elde etmesine olanak tanır. Bu çalışmada, web uygulama saldırılarının hibrit saldırı tespit sistemleri ile daha kolay ve daha doğru tespiti için sezgisel öznitelik seçimi ve makine öğrenmesine dayanan bir yaklaşım önerilmektedir. CIC-IDS2017 ve CSE-CIC-IDS2018 veri setlerindeki web uygulama saldırıları ve normal akış örnekleri bir dizi veri ön işleme aşaması sonrası birleştirilerek ve yeni bir veri seti oluşturuldu. Genetik Algoritma ve Lojistik Regresyon kullanılarak ortalama karesel hata ve öznitelik sayısı optimizasyonu gerçekleştirilip sonuçlar beş farklı makine öğrenmesi algoritması ile test edildi. Elde edilen sonuçlar incelendiğinde, öznitelik sayısının %85 oranında azaltılmasına rağmen sınıflandırmadaki başarım oranlarının %99 seviyesinde kaldığı gözlemlenmiştir.Article Türkçe Otel Yorumlarıyla Eğitilen Kelime Vektörü Modellerinin Duygu Analizi ile İncelenmesi(Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 2020) Ahmetoğlu, Hüseyin; Daş, ResulDoğal dil işlemenin(Natural Language Processing-NLP) ve metin sınıflandırmanın önemli araştırma alanlarından biri de duygu analizidir. Bu alanda çalışmalar hızla büyümektedir. Bu teknik dijital yaşamın her çeşit uygulama alanında kendini göstermektedir. Duygu analizi için geliştirilen birçok teknik vardır ancak son zamanlarda doğal dil işlemenin kelime vektör modeli metotları duygu analizinde yaygın olarak kullanılmaya başlamıştır. Word2Vec kelimeleri anlamlı vektörlere dönüştürebilen en kullanışlı kelime vektör modeli yöntemleri arasındadır. Bu yöntem ile kelime vektörleri oluşturabilmek için büyük kelime havuzlarına ihtiyaç vardır. Önceden eğitilmiş modeller duygu analizinde daha doğru sonuçlara ulaşabilmeyi mümkün kılarlar. Bu çalışmada duygu analizinde incelenmek üzere, onaylanmış kullanıcıların Türkçe otel yorumları veri kazıma yöntemleri ile toplanmıştır. Elde edilen bu özgün veriler Word2Vec ile eğitilerek kelime vektörleri oluşturulmuştur. Bu vektörler ile tekrarlanan yapay sinir ağının (Recurrent Neural Networks-RNN) bir çeşidi olan geçitli tekrarlayan birimler (Gated Recurrent Unit-GRU) ile bir sınıflandırma modeli geliştirilmiştir. Daha geniş kelime torbalarıyla eğitilmiş kelime vektörleri ile rastgele değerler atanarak oluşturulan vektörler, aynı derin öğrenme yöntemiyle yeniden incelenmiş ve elde edilen sınıflandırma başarıları karşılaştırılmıştır. Elde edilen sonuçlara göre özel alandan bağımsız, daha geniş kapsamlı kelime torbalarının sınıflandırma başarısını arttırdığı gözlemlenmiştir.