Makine Öğrenmesi Yöntemleri Kullanarak Web Uygulama Saldırılarının Tespitinde Genetik Öznitelik Seçimi Yaklaşımı

Loading...
Publication Logo

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

GOLD

Green Open Access

No

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Average
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

İnternet üzerindeki uygulamalar kodlama kaynaklı bir takım güvenlik endişelerini barındırırlar. Zayıflıklar veya güvenlik açıkları, suçluların hassas verileri çalmak için veri tabanlarına doğrudan ve genel erişim elde etmesine olanak tanır. Bu çalışmada, web uygulama saldırılarının hibrit saldırı tespit sistemleri ile daha kolay ve daha doğru tespiti için sezgisel öznitelik seçimi ve makine öğrenmesine dayanan bir yaklaşım önerilmektedir. CIC-IDS2017 ve CSE-CIC-IDS2018 veri setlerindeki web uygulama saldırıları ve normal akış örnekleri bir dizi veri ön işleme aşaması sonrası birleştirilerek ve yeni bir veri seti oluşturuldu. Genetik Algoritma ve Lojistik Regresyon kullanılarak ortalama karesel hata ve öznitelik sayısı optimizasyonu gerçekleştirilip sonuçlar beş farklı makine öğrenmesi algoritması ile test edildi. Elde edilen sonuçlar incelendiğinde, öznitelik sayısının %85 oranında azaltılmasına rağmen sınıflandırmadaki başarım oranlarının %99 seviyesinde kaldığı gözlemlenmiştir.

Description

Keywords

Bilgisayar Bilimleri, Yazılım Mühendisliği, Engineering, Mühendislik, web uygulama saldırısı;makine öğrenmesi;genetik algoritma;öznitelik seçimi;saldırı tespit sistemi, web application attack;machine learning;genetic algorithm;feature selection;intrusion detection system

Fields of Science

0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology

Citation

WoS Q

N/A

Scopus Q

N/A
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

TBV Bilgisayar Bilimleri ve Mühendisliği Dergisi

Volume

14

Issue

2

Start Page

109

End Page

119
PlumX Metrics
Captures

Mendeley Readers : 5

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
0.0

Sustainable Development Goals