Browsing by Author "Alpsalaz, Feyyaz"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Air Quality Forecasting Using Machine Learning: Comparative Analysis and Ensemble Strategies for Enhanced Prediction(Springer Int Publ Ag, 2025) Aslan, Emrah; Alpsalaz, Feyyaz; Aslan, Emrah; Department of Computer Engineering / Bilgisayar Mühendisliği BölümüAir pollution poses a critical challenge to environmental sustainability, public health, and urban planning. Accurate air quality prediction is essential for devising effective management strategies and early warning systems. This study utilized a dataset comprising hourly measurements of pollutants such as PM2.5, NOx, CO, and benzene, sourced from five metal oxide sensors and a certified analyzer in a polluted urban area, totaling 9,357 records collected over one year (March 2004-February 2005) from the Kaggle Air Quality Data Set. A comprehensive comparison of ten machine learning regression models XGBoost, LightGBM, Random Forest, Gradient Boosting, CatBoost, Support Vector Regression (SVR) with Bayesian Optimization, Decision Tree, K-Nearest Neighbors (KNN), Elastic Net, and Bayesian Ridge was conducted. Model performance was enhanced through Bayesian optimization and randomized cross-validation, with stacking employed to leverage the strengths of base models. Experimental results showed that hyperparameter optimization and ensemble strategies significantly improved accuracy, with the SVR model optimized via Bayesian optimization achieving the highest performance: an R2 score of 99.94%, MAE of 0.0120, and MSE of 0.0005. These findings underscore the methodology's efficacy in precisely capturing the spatial and temporal dynamics of air pollution.Article Citation - WoS: 0Citation - Scopus: 0Classification of Maize Leaf Diseases With Deep Learning: Performance Evaluation of the Proposed Model and Use of Explicable Artificial Intelligence(Elsevier, 2025) Aslan, Emrah; Ozupak, Yildirim; Aslan, Emrah; Uzel, Hasan; Department of Computer Engineering / Bilgisayar Mühendisliği BölümüMaize leaf diseases pose significant threats to global agricultural productivity, yet traditional diagnostic methods are slow, subjective, and resource-intensive. This study proposes a lightweight and interpretable convolutional neural network (CNN) model for accurate and efficient classification of maize leaf diseases. Using the 'Corn or Maize Leaf Disease Dataset', the model classifies four disease categories Healthy, Gray Leaf Spot, Common Rust, and Northern Leaf Blight with 94.97 % accuracy and a micro-average AUC of 0.99. With only 1.22 million parameters, the model supports real-time inference on mobile devices, making it ideal for field applications. Data augmentation and transfer learning techniques were applied to ensure robust generalization. To enhance transparency and user trust, Explainable Artificial Intelligence (XAI) methods, including LIME and SHAP, were employed to identify disease-relevant features such as lesions and pustules, with SHAP achieving an IoU of 0.82. The proposed model outperformed benchmark models like ResNet50, MobileNetV2, and EfficientNetB0 in both accuracy and computational efficiency. Robustness tests under simulated environmental challenges confirmed its adaptability, with only a 2.82 % performance drop under extreme conditions. Comparative analyses validated its statistical significance and practical superiority. This model represents a reliable, fast, and explainable solution for precision agriculture, especially in resource-constrained environments. Future enhancements will include multi-angle imaging, multimodal inputs, and extended datasets to improve adaptability and scalability in realworld conditions.