MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Air Quality Forecasting Using Machine Learning: Comparative Analysis and Ensemble Strategies for Enhanced Prediction

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Springer Int Publ Ag

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
Bölümde çağdaş teknolojik gelişmeler doğrultusunda, teknolojiyi yakından takip ederek yeni teknoloji ve uygulamaların geliştirilmesine katkı sağlamak amacıyla, nitelikli bilgisayar mühendisleri yetiştirilmesi amaçlanmaktadır. Eğitimler kapsamında, özellikle yapay zeka, makine öğrenmesi, derin öğrenme, görüntü işleme, sinyal işleme, büyük veri ve veri madenciliği, nesnelerin interneti gibi teknolojik konularda hem teorik hem de uygulamalı bir eğitim modeli hedeflenmektedir.

Journal Issue

Events

Abstract

Air pollution poses a critical challenge to environmental sustainability, public health, and urban planning. Accurate air quality prediction is essential for devising effective management strategies and early warning systems. This study utilized a dataset comprising hourly measurements of pollutants such as PM2.5, NOx, CO, and benzene, sourced from five metal oxide sensors and a certified analyzer in a polluted urban area, totaling 9,357 records collected over one year (March 2004-February 2005) from the Kaggle Air Quality Data Set. A comprehensive comparison of ten machine learning regression models XGBoost, LightGBM, Random Forest, Gradient Boosting, CatBoost, Support Vector Regression (SVR) with Bayesian Optimization, Decision Tree, K-Nearest Neighbors (KNN), Elastic Net, and Bayesian Ridge was conducted. Model performance was enhanced through Bayesian optimization and randomized cross-validation, with stacking employed to leverage the strengths of base models. Experimental results showed that hyperparameter optimization and ensemble strategies significantly improved accuracy, with the SVR model optimized via Bayesian optimization achieving the highest performance: an R2 score of 99.94%, MAE of 0.0120, and MSE of 0.0005. These findings underscore the methodology's efficacy in precisely capturing the spatial and temporal dynamics of air pollution.

Description

Keywords

Air Quality Prediction, Machine Learning, Bayesian Optimization, Regression Models, Svr

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q2

Scopus Q

Q3

Source

Volume

236

Issue

7

Start Page

End Page