1. Home
  2. Browse by Author

Browsing by Author "Evcil, Murat"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    In Silico Exploration of Plant Extracts as Ache Inhibitors: Insights From Molecular Dynamics and MM/GBSA Analysis for Alzheimer's Drug Development
    (2025) Kurt, Barıs; Baran, Ayşe; Evcil, Murat
    Alzheimer's disease is a long-term neurological disorder that affects memory and other cognitive abilities. Physostigmine is a drug still used in treating symptoms associated with this disease, with its primary mechanism of action being AChE inhibition. AChE plays a crucial role in cholinergic neurotransmission, and its inhibition has been linked to the improvement of symptoms in Alzheimer's disease. In this study, 34 phytochemicals detected through LC-MS/MS analysis of 13 plant species were investigated as potential alternative drug candidates to physostigmine. For this purpose, docking studies followed by molecular dynamics simulations and MM/GBSA energy calculations were performed. The results revealed that 24 out of 34 phytochemicals were either very close to physostigmine (MM/GBSA binding affinity: -26.102 kcal/mol) or better AChE inhibitors. Additionally, it was determined that physostigmine increased the flexibility of the molecule when bound to the AChE enzyme, a unique result compared to our drug candidates. Our research emphasizes the potential of plant-derived compounds as AChE inhibitors and presents promising candidates for future drug development studies. Furthermore, physostigmine's property of increasing enzyme flexibility offers a new perspective in drug design and indicates that the role of this feature in therapeutic efficacy needs to be examined in more detail.
  • Loading...
    Thumbnail Image
    Article
    Preparation and Characterization of Silver-Loaded Magnetic Activated Carbon Produced From Crataegus Monogyna for Antimicrobial and Antioxidant Applications
    (Wiley-v C H verlag Gmbh, 2025) Baran, Ayşe; Baran, Mehmet Fırat; Baran, Ayse; Baran, Mehmet Firat; Evcil, Murat; Kurt, Baris; Aslan, Kadir Sinan; 21.02. Department of Medical Services and Techniques / Tıbbi Hizmetler ve Teknikleri Bölümü; 21. Vocational School of Health Services / Sağlık Hizmetleri Meslek Yüksekokulu; 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi
    Secondary metabolites from several plant species have been used to cure various illnesses. Current advances allowed green synthesis nanoparticle manufacturing of metal salts from plant sources. This study involves binding activated carbon obtained from the Crataegus monogyna plant to magnetic nanoparticles and coating the resulting magnetic activated carbon nanocomposite with Ag ions (CMAC/MNPs-Ag) to produce a biomedical nanobiological material. Various techniques such as SEM, EDX, XRD, FTIR, UV-Vis, VSM, DLS, and zeta potential were used to characterize synthesized nanocomposites. CMAC/MNPs-Ag nanocomposite demonstrated activity in several processes of antioxidant activity tests. DPPH and CUPRAC activities of CMAC/MNPs-Ag nanocomposite were measured as 90.21 +/- 0.42 and 46.73 +/- 0.108 mg TE/g, respectively, while total phenolic content was measured as 27.15 +/- 0.381 mg GAE/g. Finally, the antibacterial activity of CMAC/MNPs-Ag nanocomposite was evaluated against Escherichia coli and Staphylococcus aureus by microdilution and disk diffusion techniques. The antimicrobial activity of CMAC/MNPs-Ag nanocomposite was determined using microdilution and disk diffusion techniques. For Escherichia coli, microdilution and disk diffusion were measured as 1.17 mu g mL-1 and 12 mm, respectively, while for Staphylococcus aureus, microdilution and disk diffusion were measured as 2.34 mu g mL-1 and 10 mm, respectively.