Repository logoGCRIS
  • English
  • Türkçe
  • Русский
Log In
New user? Click here to register. Have you forgotten your password?
Home
Communities
Browse GCRIS
Entities
Overview
GCRIS Guide
  1. Home
  2. Browse by Author

Browsing by Author "Mohamed, Ali Jimale"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Article
    Citation - WoS: 27
    Citation - Scopus: 33
    Green Synthesis and Characterization of Silver Nanoparticles Using Anchusa Officinalis: Antimicrobial and Cytotoxic Potential
    (Dove Medical Press Ltd, 2025) Keskin, Cumali; Aslan, Seyhan; Baran, Mehmet Firat; Baran, Ayse; Eftekhari, Aziz; Adican, Mehmet Tevfik; Mohamed, Ali Jimale
    Objective: Anchusa officinalis L. (A. officinalis) is a herbaceous traditional medicinal plant used in the treatment of some diseases. The presence of its medicinal properties suggested that A. officinalis (AO) leaf extract could be used as a coating agent for the environmentally friendly production of silver nanoparticles (AgNPs). Methods: The synthesized biogenic silver nanoparticles (AO-AgNPs) were characterized using different techniques. The antimicrobial activity of AgNPs against common bacterial pathogenic strains was determined by the minimum inhibitory concentration (MIC) method. The presence of phytochemicals was determined by LSMS/MS. The MTT assay was used to investigate AO-AgNPs' cytotoxic activity in malignant (LnCap, Caco2, MDA-MB2, A549) and healthy (HEK-293) cell lines. Results: LC-MS/MS analysis detected the presence of rich phytochemicals that may be responsible for reduction reactions. Biogenic AO-AgNPs exhibited effective inhibition of the growth of pathogenic microorganisms at low concentrations. The most effective antimicrobial activity was measured as 0.5 mu g/mL MIC against S. aureus, E. coli, and C. albicans. Moreover, AO-AgNPs showed significant inhibition on the growth of cancerous cell lines, especially at a concentration of 25 mu g/mL. On the contrary, it was determined that the inhibition rate decreased in the growth of healthy cell lines due to the increase in concentration. The lowest EC50 values were determined as 15.15 mu g/mL in A549 cells. Conclusion: The obtained results showed that AO could be an important source for the synthesis of AgNPs. Especially their ability to inhibit the growth of antibiotic-resistant pathogenic bacteria at low concentrations compared to common antibiotics indicates that AOAgNPs can be used as biomedical agents in various areas. Moreover, their suppressive effect on cancerous cell lines showed that they have the potential to be used as an anticancer agent, but due to their proliferative effect on healthy cell lines, care should be taken in determining the appropriate dose.
  • Loading...
    Thumbnail Image
    Article
    Green Synthesis of Silver Nanoparticles From Elaeagnus Angustifolia Extract: Characterization and Evaluation of Antibacterial and Cytotoxic Properties
    (Springer, 2026) Baran, Ayse; Ghorbanzadeh, Vajihe; Dogan, Yusuf; Ahmadian, Elham; Zulfugarova, Parvin; Mohamed, Ali Jimale
    BackgroundCurrent medical problems are complex and require a new approach. Nanomaterials can address these complications. Silver nanoparticles (AgNPs), in particular green-synthetized particles, because of their unique properties have attract the attention of scientist. The objective of this work deals with using Elaeagnus angustifolia (EA) leaf extract as a reducing agent for biofabrication of AgNPs and investigation of its antibacterial and anti-cancer properties.MethodUV-Visible spectroscopy (UV-Vis), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), field emission scanning electron microscopy (FESEM), transmission Electron Microscopy (TEM), Scanning-Transmission Electron Microscope (STEM) and atomic force microscopy (AFM) techniques were used for characterization of the biosynthesized AgNPs. Antimicrobial efficacy was measured through disk diffusion and minimum inhibitory concentration (MIC) methods, while cytotoxic effects on PC-3 cancer cells were evaluated using the MTT assay.ResultThe biosynthesized AgNPs exhibited a strong surface plasmon resonance peak at approximately 441 nm, confirming successful synthesis. XRD analysis indicated a face-centered cubic structure, with crystallite sizes 27.04 nm. Antibacterial tests revealed significant activity against E. coli and K. pneumoniae, with AgNPs demonstrating comparable efficacy to standard antibiotics. In particular, AgNPs demonstrated successful activity on E. coli with an MIC value of 113.24 +/- 14.36 and an inhibition zone of 24.32 +/- 1.25 mm, comparable to standard antibiotics Furthermore, the AgNPs displayed notable cytotoxic effects on PC-3 cells, with an IC50 value of 58.77 mu g/mL.ConclusionThe results explore the potential of leaf extract of Elaeagnus angustifolia as an effective agent for the green synthesis of AgNPs that have significant antibacterial properties. This study supports the application of green synthesis in medical therapies.
Repository logo
Collections
  • Scopus Collection
  • WoS Collection
  • TrDizin Collection
  • PubMed Collection
Entities
  • Research Outputs
  • Organizations
  • Researchers
  • Projects
  • Awards
  • Equipments
  • Events
About
  • Contact
  • GCRIS
  • Research Ecosystems
  • Feedback
  • OAI-PMH

Log in to GCRIS Dashboard

GCRIS Mobile

Download GCRIS Mobile on the App StoreGet GCRIS Mobile on Google Play

Powered by Research Ecosystems

  • Privacy policy
  • End User Agreement
  • Feedback