Browsing by Author "Senan, Sibel"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Advanced Detection of Retinal Diseases Via Novel Hybrid Deep Learning Approach(int information & Engineering Technology Assoc, 2023) Aykat, Sukru; Senan, Sibel; Aykat, ŞükrüDiabetic drusen, choroidal neovascularization (CNV), and macular edema (DME) are some retinal diseases that can cause severe blindness and vision loss. Early diagnosis of retinal diseases is vital to prevent this irreversible damage to the eye. The problem statement of this study can be given as presenting new deep learning based results for detecting these retinal diseases. For this purpose, OCT dataset was used to detect CNV, DME and Drusen patients. This data set, which is frequently used in the literature, consists of CNV, DME, Drusen and Normal retina images. RestNet50, InceptionV3, InceptionResnetV2, MobileNet, DenseNet-201, Xception, EfficentNetB4, EfficentNetB7 and EfficentNetV2S models of the CNN architecture were applied to the data set and the performance results of these models were obtained. Then, in order to increase the classification performance of each of these models, hyperparameter tuning was performed by reducing the learning rate by half in each epoch. Later, a hybrid version of the EfficientNetV2S and Xception convolutional neural network models, the most successful of these hyperparameter-tuned models, was developed. The performance analysis results of our proposed hybrid deep learning model are given by comparing them with traditional deep learning models in the literature. These comparison results show that the classification success of the proposed model is higher than the success of traditional deep learning models in the literature. Thus, the proposed hybrid model can shorten the clinical diagnosis time. In addition, the costs of healthcare services can be reduced by intervening in treatable diseases earlier, instead of more costly interventions in the advanced stages of the disease.Conference Object Classification of Epileptic and Healthy Individual Eeg Signals Using Neural Networks(Ieee, 2020) Aykat, Sukru; Senan, Sibel; Ensari, Tolga; Aykat, ŞükrüElectroencephalogram (EEG) are signals used for the analysis of the electrical and functional activity of the brain. These signals are commonly used to detect epileptic seizures. The aim of this study is to classify healthy and epileptic individual EEG signals using artificial neural networks (ANN). For this purpose, the open data source of the University of Bonn was used. The success rates of the classification results obtained with the designed ANN model show the effectiveness of this ANN structure in the application under consideration.Article Derin Öğrenme Kullanılarak Fundus Görüntülerinden Katarakt ve Diyabetik Retinopati Tespiti(BANDIRMA ONYEDİ EYLÜL ÜNİVERSİTESİ, 2023) Aykat, Şükrü; Senan, Sibel; Aykat, ŞükrüDiyabetik retinopati ve katarakt ciddi körlüğe ve görme kaybına neden olabilen bazı retina hastalıklarıdır. Gözde meydana gelen bu geri dönüşü olmayan hasarı önlemek için retina hastalıklarının erken teşhisi hayati önem taşımaktadır. Bu çalışmanın problem cümlesi, bu retina hastalıklarının tespiti için derin öğrenme tabanlı sonuçların sunulması olarak verilebilir. Bu amaçla ilk önce ham bir veri seti üzerinde histogram eşitleme yöntemi kullanılarak yeni bir seti oluşturulmuştur. Ardından beş geleneksel derin öğrenme modeline hiperparametre ayarı yapılarak veri setleri üzerinde eğitimler gerçekleştirilmiştir. En son olarak veri setleri üzerinde en yüksek başarıya sahip MobileNet tabanlı bir hibrit model geliştirilmiştir. Önerilen hibrit model, ön işlenmiş veri seti üzerinde %99 doğruluk oranı elde etmiştir. Hibrit modelin sınıflandırma başarısının literatürdeki derin öğrenme modellerinin başarısından daha yüksek olduğu görülmüştür. Bu çalışma diyabetik retinopati ve katarakt hastalarının teşhis sürecine katkı sağlayacaktır.