Bilgisayar Teknolojileri Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12514/175
Browse
Browsing Bilgisayar Teknolojileri Bölümü Koleksiyonu by Journal "1st International Conference on Innovative Academic Studies"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Presentation Derin Öğrenme Yöntemleri ile Küçük Olmayan Hücre Akciğer Kanseri Tümör Karakterizasyonu(2022) Çınar, Ahmet; Ağalday, FatihKüresel kanser araştırmaları ölüm oranlarına göre bulgular en tehlikeli hastalık olarak Akciğer kanserini göstermektedir. Solunum yolu hastalıklarına neden olan havada bulunan küçük çaplı partikül maddeler akciğer kanserine neden olmaktadır. Akciğer kanseri için en önemli risk faktörü sigara ve benzeri alışkanlıklardır. Hastalığın tanısında manyetik rezonans görüntüleme ve bilgisayarlı tomografi gibi teknikler kullanılarak akciğer bölgesinin detaylı görüntülenmesi erken akciğer nodüllerini bulmak için cerrahi bir yöntem olmayan tespit yöntemlerinden biridir. Bilgisayar destekli görüntüler sayesinde akciğer nodülü tespit sisteminin kullanılması erken teşhis konusunda uzman doktorlara yardımcı olmaktadır. Günümüzde PET-CT görüntüleme ile uzman kişilerin onkolojik tanısına oldukça katkı sunmaktadır. Tıbbi görüntüler radyologlar ve doktorlar tarafından teşhis edilmektedir. Ancak uzmanlar tarafından yapılan bu teşhis için dikkat ve uzun süreli incelenmesi yorgunluğa ve hatalara neden olabilmektedir. Bu nedenle görüntülerin değerlendirilmesi için otomatikleştirilmesine ihtiyaç vardır. Evrişimsel Sinir Ağı gibi derin öğrenme algoritmaları, tümörleri tespit etmek ve sınıflandırmak için yaygın olarak kullanılmaktadır. Derin öğrenmeyi temel alan akciğer kanseri erken teşhis ve analiz yönteminin temel özelliği, akciğer Bilgisayarlı Tomografi görüntülerini bilgisayar sistemi ve yardımcı tanı sistemi aracılığıyla analiz ederek, dahil edilen görüntülerdeki akciğer nodüllerinin özelliklerini çıkarmaktır. İyi huylu ve kötü huylu akciğer nodüllerinin görüntülerini sınıflandırmanın temel amacı, akciğer nodülü hakkında doktorlara ve hastalara daha bilimsel ve güvenilir bir yardımcı sınıflandırma sonucu sağlamak, böylece teşhis ve tedavi sürecinin daha doğru olabilmesi, doktorlarının klinik muayenesini ve görünütüyü okuma iş yükünü azaltmaktır. Bu çalışmada, derin öğrenmenin en yaygın kullanımlarından biri olan transfer öğrenme modeli kullanılacaktır. Bu yöntem ile önceden eğitilmiş ağlar ile farklı sınıfa ait gerçek görüntüler eğitilmiştir