Uygulama - Araştırma Merkezleri ve Koordinatörlükler Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12514/3599
Browse
Browsing Uygulama - Araştırma Merkezleri ve Koordinatörlükler Koleksiyonu by Publication Index "TR-Dizin"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Antioxidant and Antimicrobial Capacity of Quinic Acid(Bitlis Eren Üniversitesi Fen Bilimleri Dergisi, 2022) Ercan, Leyla; Doğru, MehmetRecently, agents with natural antioxidant and antimicrobial properties have been popularly studied. For this purpose, phenolic compounds, terpenes, and organic acids are examined for their antioxidant and antimicrobial properties. Of these, organic acids are increasingly being used in pharmacology, medicine, food, and industry. Quinic acid is a natural organic compound found in many edible fruits and plants. In this study, the antioxidant effect of quinic acid, which has the structure of cyclohexane carboxylic acid, was determined in vitro using seven different methods (DPPH, ABTS, CUPRAC, DMPD, FRAP, Fe3+ reduction, and Total antioxidant method). In addition, its antimicrobial effect on fungi (C. albicans), gram-positive bacteria (S. aureus, S. pyogenes), and gram-negative bacteria (E. coli, K. pneumoniae, and P. aeruginosa) were determined by the disk diffusion method. As a result, it was found that quinic acid has broad-spectrum antimicrobial properties, but its antioxidant properties are too low to be highlighted. While its antimicrobial activity was quite good, especially on K. pneumoniae E. coli, S. aureus, S. Pyogenes, and P. aeruginosa, it did not show any effect on C. albicans. Although the antioxidant property of quinic acid is low, it showed more antioxidant properties in the DMPD method, which is one of these methods, because it dissolves very well in water.Article Citation - WoS: 3Citation - Scopus: 2Investigation of Antibacterial and Antifungal Efficacy of Zinc and Silver Nanoparticles Synthesized From Nasturtium Officinale(Ankara Univ, Fac Agriculture, 2023) Ercan, LeylaNanoparticles are nano -sized materials that can be widely used in fields such as medicine, pharmacology, and industry. The use of natural and easily available materials in nanoparticle synthesis is preferable for economic reasons. Plants are extremely suitable for the synthesis of nanoparticles due to their wide availability and the large number of components they contain with various properties. For this purpose, silver nanoparticles and zinc nanoparticles (AgNPs and ZnNPs), two different nanoparticles were synthesized from an edible plant, watercress (Nasturtium officinale). Scanning electron microscopy, scanning electron microscopy -energy dispersive X-ray, UV-VIS spectroscopy, X-ray diffraction (XRD), and fourier transform infrared spectrophotometer (FTIR) analyses of these nanoparticles were performed. In addition, the antimicrobial effects of these synthesized nanoparticles were determined using the disk diffusion method. The nanoparticles obtained from Nasturtium officinale were effective on Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa), Gram-positive bacteria (Staphylococcus aureus, Streptococcus pyogenes), and fungi (Candida albicans). In particular, AgNPs with broad-spectrum antimicrobial activity were obtained from the watercress. While ZnNPs showed inhibition effects of 49% on K. pneumoniae, 51% on S. aureus, and 62% on C. albicans, AgNPs showed inhibition effects of 93% on P. aeruginosa, 87% on S. aureus, 81% on E. coli, 80% on C. albicans, 72% on K. pneumoniae, and 56% on S. pyogenes. The results show that Nasturtium officinale can be used effectively in the production of new biotechnological products, particularly ones with antimicrobial properties.

