Organik Tarım Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12514/109
Browse
Browsing Organik Tarım Bölümü Koleksiyonu by WoS Q "Q4"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Article THE CADMIUM PHYTOEXTRACTION EFFICIENCY OF SCMTII GENE BEARING TRANSGENIC TOBACCO PLANT(Biotechnology & Biotechnological Equipment, 2010) Dağhan, Hatice; Arslan, Mehmet; Uygur, Veli; Köleli, Nurcan; Eren, abdullahCadmium pollution is a serious world-wide problem affecting the human health and the environmental quality. Phytoremediation, the use of green plants to remove, sequester or detoxify pollutants offers an environmentally-friendly alternative to engineeringbased methods for remediation. The T2 generations of the ScMTII gene bearing transgenic and non-transgenic tobacco plants were grown hydroponically in Hoagland nutrition solution containing 0, 5 and 10 mg/L Cd in controlled growth room to determine their ability to uptake and accumulate Cd within the shoots and roots. There were no significant shoot and root dry weight differences between transgenic and non-transgenic tobacco plants. The ScMTII gene bearing transgenic tobacco plant accumulated 19.8% higher Cd than the non-transgenic tobacco plant in the above ground parts of the plant during the two weeks exposure period in hydroponic culture. In non-transgenic plant, however, Cd is accumulated mainly in the roots. The results of current study indicate that the use of the ScMTII gene bearing transgenic tobacco plant for Cd phytoremediation is limited. Further studies are needed to test the effectiveness of the ScMTII gene for phytoextraction of other heavy metal ions.Article Diyarbakır Yöresindeki Bazı Tarım Topraklarının Hümik Asit İçerikleri ile Eser Elementler Arasındaki İlişkinin Çok Değişkenli İstatistiksel Yöntemlerle Değerlendirilmesi(Kahramanmaras Sutcu Imam Univ Rektorlugu, 2024) Duzgun, Mehmet; Eren, Abdullah; Bilge, Ugur; Ceylan, Ramazan; Selcuk, Ramazan; Duz, M. ZahirThere are important relationships between humic acid (HA) and the bioavailability, reactions and mobility of trace elements in the soil. For this reason, soils are tried to be improved chemically, biologically and physically with HA applications. In this study, the relationship of humic acid contents of 118 agricultural soil samples from Diyarbakir region with some trace elements (Al, As, Ba, Be, Cd, Fe, Mn, Pb, Sb, Sn, Se, V and P) was evaluated by multivariate statistical analysis. After the soil samples were solubilized by the microwave wet digestion method, the element contents were determined with the ICP OES (Inductively Coupled Plasma Optical Emission Spectrometer) device. SRM NIST 2586 was used as SRM (Standard Reference Material) for the accuracy of the method. Recovery values were found between 91.6% and 105.9% as a result of the analysis. Humic acid was extracted from soils by the International Society for Humic Substances (IHSS) method and determined using a shaker and centrifuge device. For the accuracy of the method, it was tested with Humic Acid Sodium Salt (HA-Na). Pearson correlation and partial correlation analysis were applied to the obtained data set. In addition, multivariate statistical analyses such as multiple regression HCA (Hierarchical Cluster Analysis) and PCA (Principal Component Analysis) were applied. Multiple regression analysis was performed according to the Step-wise method. Manganese and P (p< 0.01) were significant when HA was taken as the dependent variable. According to the Pearson correlation coefficient, the correlation between HA and As (r = -0.282**) in soil was negative and significant, while Fe (r = 0.185*), Mn (r = 0.273**)), Sn (r = 0.242*), Se (r = 0.325**) and P (r = 0.315**) were determined as positive and significant. In clustering and PCA analysis, HA, P Mn and Fe were found to be in the same group. The analyses have shown that HA has a positive effect on the plant nutrients in the soil.Article GREEN SYNTHESIS, CHARACTERIZATION AND ANTIMICROBIAL ACTIVITY OF SILVER NANOPARTICLES (AgNPs) FROM MAIZE (ZEA MAYS L.)(APPLIED ECOLOGY AND ENVIRONMENTAL RESEARCH, 2019) Eren, abdullah; BARAN, Mehmet FıratIn recent years, the biosynthesis (green synthesis) of metal nanoparticles such as silver nanoparticles (AgNPs) have become one of the safest, most cost-effective and environmentally friendly approaches. In this study, AgNPs were synthesized using maize (Zea mays L.) leaves. For the characterization of synthesized AgNPs different techniques were used, such as X-ray diffraction spectroscopy (XRD), Ultraviolet visible (UV-Vis) spectroscopy, transmission electron microscopy (TEM), Energy dispersive X-ray spectroscopy (EDX), Fourier-transformed infrared spectroscopy (FT-IR) and Thermal gravimetric and Differential thermal analysis (TGA-DTA). The XRD results showed that AgNPs had a mean diameter of 12.63 nm and a crystal-like appearance. In addition, antimicrobial activities of synthesized AgNPs were evaluated using 3 different antibiotics against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria and Candida albicans yeast. Antifungal activity of AgNPs with antibiotics has been observed to be better than the antibiotics against Gram-positive and Gram-negative bacteria. The minimum inhibitory concentrations were found to be 0.084, 0.337 and 0.021 mg mL-1 for Escherichia coli, Staphylococcus aureus, and Candida albicans, respectively. The results revealed that AgNPs synthesized from maize leaf extract have antibacterial activity against Gram-negative Escherichia coli, Gram-positive Staphylococcus aureus and antifungal activity against Candida albicans yeast, and that the produced AgNPs could be used in the production of biomedical products and in the pharmaceutical industry.Article INVESTIGATING ANTIMI CROBIAL ACTIVITY OF SILVER NANOPARTICLES PRODUC ED THROUGH GREEN SYN THESIS USING LEAF EXTRACT O F COMMON GRAPE ( VITIS VINIFERA(2019) Acay, Hilal; Baran, Mehmet Fırat; Eren, AbdullahIn this study, a direct approach to fabricating silver nanoparticles (AgNPs) via the leaf extract of common grape (Vitis vinifera) has been demonstrated. The produced particles were found with a maximum wavelength of 452.47 nm, spherical shape and the crystal size of 18.53 nm through UV-Visible spectrophotometry, XRD (X-ray diffraction) and SEM (Scanning electron microscopy) characterization methods. Furthermore, the functional groups involved in the reduction were specified with FTIR (Fourier transform infrared spectroscopy), the elemental compounds were identified with EDX (Energy dispersive X-Ray spectroscopy) and the degradation points were determined with TGA-DTA (Thermal gravimetric analysis) methods. AgNPs were found to be effective against hospital pathogens, namely Gram-negative Escherichia coli ATCC 25922, Gram-positive Staphylococcus aureus ATCC 29213 and Candida albicans fungus at the concentrations of 0.314, 0.078 and 0.334 g mL-1, respectively.
