Makine ve Metal Teknolojileri Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12514/171
Browse
Browsing Makine ve Metal Teknolojileri Bölümü Koleksiyonu by WoS Q "Q2"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Citation - WoS: 4Citation - Scopus: 3Experimental analysis and modeling of the thermal conductivities for a novel building material providing environmental transformation(Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 2021) Ünal, Fatih; Koçyiğit, Fatih; Koçyiğit, Şermin; 17.05. Department of Machine and Metal Technologies / Makine ve Metal Teknolojileri Bölümü; 17. Vocational Higher School / Meslek Yüksekokulu; 01. Mardin Artuklu University / Mardin Artuklu ÜniversitesiIn this study, a mathematical equation was developed to determine the thermal conductivity of the materials by producing porous heterogeneous materials with expanded vermiculite aggregates, waste basalt powder, and the mixture of molten tragacanth added building materials. Experimental thermal conductivity of the samples was determined by using the hot wire method. Experimental thermal conductivity of the samples produced varied between 0.196 W/mK and 0.522 W/mK depending on the expanded vermiculite ratio, the ratio of waste basalt powder, and the ratios of tragacanth and cement. In addition, the developed mathematical thermal conductivity ranges from 0.201 W/mK to 0.455 W/mK. The experimental values deviated from the values in the developed model in the range of 3–19%. This equation was developed based on the porosity ratio of the produced samples, the density and thermal conductivity of the materials in the samples. The thermal conductivity results obtained by the experimental and theoretically developed equation were compared with each other and it was observed that the results were compatible.Article Citation - WoS: 77Citation - Scopus: 91Fuels properties, characterizations and engine and emission performance analyses of ternary waste cooking oil biodiesel-diesel-propanol blends(SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2019) Bencheikh, Kamel; Atabani, A. E; Shobana, Sutha; Mohammed, M. N.; Uguz, Gediz; Arpa, Orhan; Kumar, Gopalakrishnan; Ayanoglu, Abdulkadir; Bokhari, AwaisApplication of biodiesel synthesized from waste-based raw materials with numerous solvents (higher chain alcohols) in diesel engines is a topic of great interest. This article examines the effect of biodiesel-diesel-propanol ternary blends. Physio-chemical properties, fatty acids composition (FAC), FT-IR, TGA, DSC, NMR along with some selected engine and emissions performance parameters were examined. Biodiesel was produced from waste cooking oil and exhibits excellent FAC that yields kinematic viscosity, cetane number, oxidation stability, higher heating value and iodine value of 3.93mm(2)/s, 58.88, 7.43 h, 39.45 MJ/kg and 64.92 g/100 g. Propanol blended biodiesel depicted an affirmative improvement in cold flow properties and decremented density. FT-IR and NMR results confirms the existence of biodiesel-diesel-propanol and prove their qualities as reliable methods. DSC and TGA results confirm that propanol reduces the onset and crystallization temperatures of the blends. Engine and emissions performance revealed that propanol addition further increased brake specific energy consumption (BSEC) and brake specific fuel consumption (BSFC) and reduced carbon monoxide (CO), exhaust gas temperature (EGT), nitrogen oxides (NOx) and smoke. This study proves the feasibility of the ternary blends with rewarding benefits in cold flow properties and densities besides acceptable engine and emissions performance results.Article Citation - WoS: 3Citation - Scopus: 6Thin-Layer Drying Modeling in the Hot Oil-Heated Stenter(International Journal of Thermophysics, 2020) Ünal, Fatih; Akan, Ahmet Erhan; 17.05. Department of Machine and Metal Technologies / Makine ve Metal Teknolojileri Bölümü; 17. Vocational Higher School / Meslek Yüksekokulu; 01. Mardin Artuklu University / Mardin Artuklu ÜniversitesiAlthough the drying processes have an important place in the textile industry in terms of drying or various textile finishing applications, they are considered as an expensive process in terms of energy and time consumed. Therefore, it is of great importance to simulate with mathematical models the drying behavior of a stenter (ram machine), one of the most preferred convection dryers in the textile industry. For this purpose, in this study, modeling was attempted of the drying behavior of 67 % Cotton + 33 % Polyester containing Thessaloniki knit fabrics, using experimental data obtained from drying processes performed in 9 different drying operations in a 10-chamber hot oil-heated stenter and 12 different empirical and semi-empirical thin-layer models that are frequently used in the literature. R2 values from regression analysis were evaluated as the primary factor in the model fit selection. According to the results obtained, it was understood that the Diffusion Approach model with R2 values ranging from 0.9991 to 0.9999, Two Term Model with R2 values ranging from 0.9995 to 0.9999, and the Modified Henderson and Pabis model with R2 values ranging from 0.9995 to 0.9999 gave the most appropriate results upon simulating drying behavior. In this regard, this study, which contains explanatory information on the drying behavior in a stenter, is thought to be useful to researchers.