MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Türk, Ömer

Loading...
Profile Picture
Name Variants
Turk O.
Job Title
Doç. Dr.
Email Address
omerturk@artuklu.edu.tr
Main Affiliation
Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
Status
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID
Scholarly Output

23

Articles

18

Citation Count

268

Supervised Theses

0

Scholarly Output Search Results

Now showing 1 - 10 of 22
  • Article
    A Class Activation Map-Based Interpretable Transfer Learning Model for Automated Detection of ADHD from fMRI Data
    (Sage Journals, 2022) Uyulan, Caglar; Erguzel, Turker Tekin; Türk, Ömer; Farhad, Shams; Metin, Bariş; Tarhan, Nevzat; Türk, Ömer
    Automatic detection of Attention Deficit Hyperactivity Disorder (ADHD) based on the functional Magnetic Resonance Imaging (fMRI) through Deep Learning (DL) is becoming a quite useful methodology due to the curse of-dimensionality problem of the data is solved. Also, this method proposes an invasive and robust solution to the variances in data acquisition and class distribution imbalances. In this paper, a transfer learning approach, specifically ResNet-50 type pre-trained 2D-Convolutional Neural Network (CNN) was used to automatically classify ADHD and healthy children. The results demonstrated that ResNet-50 architecture with 10-k cross-validation (CV) achieves an overall classification accuracy of 93.45%. The interpretation of the results was done via the Class Activation Map (CAM) analysis which showed that children with ADHD differed from controls in a wide range of brain areas including frontal, parietal and temporal lobes.
  • Conference Object
    Classification of Mental Task EEG Records Using Hjorth Parameters
    (IEEE, 2017) Turk, Omer; Seker, Mesut; Akpolat, Veysi; Ozerdem, Mchmet Sirac; Türk, Ömer
    The effects of mental activities on brain dynamics is the main field that studied for a long time, but the results of studies have not reached the desired level. The aim of present study was to classify the mental task EEG records by using Hjorth parameters. hi this study, EEG signals that recorded from 9 subjects were used. EEG signals were recorded by applying a experimental paradigm which contains five stimuli related to different mental task. These stimuli are defined as condition word mental subtraction spatial navigation right hand motor imagery and feet motor imagery Wavelet packet transform was used to obtain sub bands of EEC signals. Statistical parameters that consist of mobility, complexity and Mahalanobis distance were applied to sub-bands. Feature vectors were classified by using artificial neural network. When classification performances related to mental activities were examined, the best classification accuracy was obtained as nearly 80% for 'condition word - mental subtraction', ('spatial navigation feet motor imagery;' and 'spatial navigation - condition word'. The lowest classification accuracy was obtained for 'mental subtraction - right hand motor imagery,', 'condition word - right hand motor imagery' and 'spatial navigation right hand motor imagery'. The classification accuracies related to all stimuli that classifed among themselves were obtained as 77,61%.
  • Article
    Automatic Detection of Brain Tumors With the Aid of Ensemble Deep Learning Architectures and Class Activation Map Indicators by Employing Magnetic Resonance Images
    (Elsevier, 2024) Turk, Omer; Ozhan, Davut; Acar, Emrullah; Akinci, Tahir Cetin; Yilmaz, Musa; Türk, Ömer
    Today, as in every life-threatening disease, early diagnosis of brain tumors plays a life-saving role. The brain tumor is formed by the transformation of brain cells from their normal structures into abnormal cell structures. These formed abnormal cells begin to form in masses in the brain regions. Nowadays, many different techniques are employed to detect these tumor masses, and the most common of these techniques is Magnetic Resonance Imaging (MRI). In this study, it is aimed to automatically detect brain tumors with the help of ensemble deep learning architectures (ResNet50, VGG19, InceptionV3 and MobileNet) and Class Activation Maps (CAMs) indicators by employing MRI images. The proposed system was implemented in three stages. In the first stage, it was determined whether there was a tumor in the MR images Tumor) were detected from MR images (Multi-class Approach). In the last stage, CAMs of each tumor group were created as an alternative tool to facilitate the work of specialists in tumor detection. The results showed that the overall accuracy of the binary approach was calculated as 100% on the ResNet50, InceptionV3 and MobileNet architectures, and 99.71% on the VGG19 architecture. Moreover, the accuracy values of 96.45% with ResNet50, 93.40% with VGG19, 85.03% with InceptionV3 and 89.34% with MobileNet architectures were obtained in the multi-class approach.
  • Article
    Employing deep learning architectures for image-based automatic cataract diagnosis
    (TÜBİTAK, 2021) Acar, Emrullah; Türk, Ömer; Ertuğrul, Ömer Faruk; Aldemir, Erdoğan; Türk, Ömer
    Various eye diseases affect the quality of human life severely and ultimately may result in complete vision loss. Ocular diseases manifest themselves through mostly visual indicators in the early or mature stages of the disease by showing abnormalities in optics disc, fovea, or other descriptive anatomical structures of the eye. Cataract is among the most harmful diseases that affects millions of people and the leading cause of public vision impairment. It shows major visual symptoms that can be employed for early detection before the hypermature stage. Automatic diagnosis systems intend to assist ophthalmological experts by mitigating the burden of manual clinical decisions and on health care utilization. In this study, a diagnosis system based on color fundus images are addressed for cataract disease. Deep learning-based models were performed for the automatic identification of cataract diseases. Two pretrained robust architectures, namely VGGNet and DenseNet, were employed to detect abnormalities in descriptive parts of the human eye. The proposed system is implemented on a wide and unique dataset that includes diverse color retinal fundus images that are acquired comparatively in low-cost and common modality, which is considered a major contribution of the study. The dataset show symptoms of cataracts in different phases and represents the characteristics of the cataract. By the proposed system, dysfunction associated with cataracts could be identified in the early stage. The achievement of the proposed system is compared to various traditional and up-to-date classification systems. The proposed system achieves 97.94% diagnosis rate for cataract disease grading.
  • Article
    FPGA simulation of chaotic tent map-based S-Box design
    (Wiley Online Library, 2022) Türk, Ömer; Türk, Ömer
    The chaotic system has a characteristically random behavior by nature, and these systems have their own characteristics in a completely deterministic structure. This feature of a chaotic system makes it difficult to predict encryptions designed based on such a system. Thanks to this unpredictable and strong feature, maps produced from chaotic systems are an important alternative in the field of encryption. One of the structures obtained by employing chaotic maps is the substitution box. S-Box, which provides the confusion principle used in block ciphers, is the main block that dynamically replaces unencrypted data with confidential data and makes a significant contribution to ensuring high security in the encryption system. Therefore, S-Boxes hold a critical role in block ciphers. Speed and reliability are important parameters in the creation of this main block. Especially, applications performed on hardware are more reliable and high performance. Therefore, in this study, an S-Box was designed using fieldprogrammable gate arrays (FPGA) simulation from a chaotic tent map to create a fast and reliable S-Box because FPGAs offer solutions that may be important in this field considering their fast and customizable architecture. In the proposed method, the S-Box was created in 0.16 s. In addition, the dynamic properties of the chaotic tent map were analyzed with Lyapunov exponents, and the NIST SP 800-22 test was applied for the information encryption suitability of the proposed chaotic system. Also, to test the reliability of the produced S-Box structures, SAC, non-linearity, bit independence criteria, and input/output XOR distribution table metrics were implemented. The results showed that the proposed chaotic map was dynamic and passed the reliability tests successfully.
  • Article
    Deep Learning-Based Artificial Intelligence Can Differentiate Treatment-Resistant and Responsive Depression Cases With High Accuracy
    (Sage Publications inc, 2025) Metin, Sinem Zeynep; Uyulan, Caglar; Farhad, Shams; Erguzel, Tuerker Tekin; Turk, Omer; Metin, Baris; Tarhan, Nevzat; Türk, Ömer
    Background: Although there are many treatment options available for depression, a large portion of patients with depression are diagnosed with treatment-resistant depression (TRD), which is characterized by an inadequate response to antidepressant treatment. Identifying the TRD population is crucial in terms of saving time and resources in depression treatment. Recently several studies employed various methods on EEG datasets for automatic depression detection or treatment outcome prediction. However, no previous study has used the deep learning (DL) approach and EEG signals for detecting treatment resistance. Method: 77 patients with TRD, 43 patients with non-TRD, and 40 healthy controls were compared using GoogleNet convolutional neural network and DL on EEG data. Additionally, Class Activation Maps (CAMs) acquired from the TRD and non-TRD groups were used to obtain distinctive regions for classification. Results: GoogleNet classified the healthy controls and non-TRD group with 88.43%, the healthy controls and TRD subjects with 89.73%, and the TRD and non-TRD group with 90.05% accuracy. The external validation accuracy for the TRD-non-TRD classification was 73.33%. Finally, the CAM analysis revealed that the TRD group contained dominant features in class detection of deep learning architecture in almost all electrodes. Limitations: Our study is limited by the moderate sample size of clinical groups and the retrospective nature of the study. Conclusion: These findings suggest that EEG-based deep learning can be used to classify treatment resistance in depression and may in the future prove to be a useful tool in psychiatry practice to identify patients who need more vigorous intervention.
  • Article
    Diagnosis of schizophrenia based on transformation from EEG sub-bands to the image with deep learning architecture
    (Springer Science and Business Media Deutschland GmbH, 2023) Türk, Ömer; Aldemir, Erdoğan; Acar, Emrullah; Ertuğrul, Ömer Faruk; Türk, Ömer
    Electroencephalogram is a low-cost, non-invasive, and high-entropy signal and thus has huge potential for clinical diagnosis of neurological diseases and brain–computer interface applications. Schizophrenia is one of the most severe diseases that show behavioral manifestations that are easily uncovered by specialists. In this context, the electroencephalogram analysis becomes more important for the automatic diagnosis of schizophrenia disease in the clinical process. In this study, a deep learning architecture, namely ResNet, aims to classify schizophrenia is proposed. The proposed system transforms wavelet sub-bands of the electroencephalogram into two-dimensional image space, which is considered the main unique contribution of the study. Thus, the disease indicators and features included in images could be figured out. Moreover, a discussion on the class activation maps was made to give a wide perspective on the features related to the disease. The proposed system was implemented on a large-scale electroencephalogram database containing records from unhealthy and healthy patients in various phases. The ResNet was implemented in three modes to give a thorough perspective in terms of the metrics of the diagnosis accuracy. The proposed system achieves 92.94% diagnosis accuracy rate, and the result shows that the proposed transformation-based solution is owing to the features related to schizophrenia disease
  • Article
    Determination of Emotional Status From Eeg Time Series by Using Emd Based Local Binary Pattern Method
    (2020) Türk, Ömer; Türk, Ömer
    Although detecting emotional states from brain dynamics is an issue that has been studied for a long time, the desired level has not been reached yet. In this study, Empirical mode decomposition (EMD) based Local Binary Pattern (LBP) method is proposed to determine emotional states using (positive-neutral-negative) Electroencephalogram (EEG) signals. By using this method, a hybrid structure is created to obtain features from EEG signals. In the study, Seed EEG dataset including 15 positive subjects and positive-neutral-negative emotional state is used. In proposed method, a classification task is utilized with the basis of individuals by using 27 EEG channels from left hemisphere of each subject. Level 5 is separated by applying EMD to EEG segments that contain three emotional states. Features are obtained from the Intrinsic Mode Functions (IMFs) using LBP method. These features are classified with k Nearest Neighbor (k-NN) and Artificial Neural Network (ANN). The average classification accuracy for 15 participants is 83.77% with k-NN classifier and 84.50% with the ANN classifier. Furthermore, the highest classification performance is found to be 96.75% with the k-NN classifier. The results obtained in the study support related studies in the literature.
  • Article
    The Deep Learning Method Differentiates Patients With Bipolar Disorder From Controls With High Accuracy Using Eeg Data
    (Sage Publications inc, 2024) Metin, Baris; Uyulan, Caglar; Erguzel, Turker Tekin; Farhad, Shams; Cifci, Elvan; Turk, Omer; Tarhan, Nevzat; Türk, Ömer
    Background: Bipolar disorder (BD) is a mental disorder characterized by depressive and manic or hypomanic episodes. The complexity in the diagnosis of Bipolar disorder (BD) due to its overlapping symptoms with other mood disorders prompted researchers and clinicians to seek new and advanced techniques for the precise detection of Bipolar disorder (BD). One of these methods is the use of advanced machine learning algorithms such as deep learning (DL). However, no study of BD has previously adopted DL techniques using EEG signals. Method: EEG signals of 169 BD patients and 45 controls were cleaned from the artifacts and processed using two different DL methods: a one-dimensional convolutional neural network (1D-CNN) combined with the long-short term memory (LSTM) and a two-dimensional convolutional neural network (2D-CNN). Additionally, Class Activation Maps (CAMs) acquired from the bipolar and control groups were used to obtain distinctive regions to specify a particular class in an image. Results: Group identifications were confirmed with 95.91% overall accuracy through the 2D-CNN method, demonstrating very high sensitivity and lower specificity. Also, the overall accuracy obtained from the 1D-CNN + LSTM method was 93%. We also found that F4, C3, F7, and F8 electrode activities produce predominant features to detect the bipolar group. Conclusion: To our knowledge, this study used EEG-based DL analysis for the first time in BD. Our results suggest that the raw EEG-based DL algorithm can successfully differentiate individuals with BD from controls. Class Activation Map (CAM) analysis suggests that prefrontal changes are predominant in EEG data of patients with BD.
  • Article
    Classification of electroencephalogram records related to cursor movements with a hybrid method based on deep learning
    (Wiley Online Library, 2021) Türk, Ömer; Türk, Ömer
    In brain computer interface (BCI), many transformation methods are used whenprocessing electroencephalogram (EEG) signals. Thus, the EEG can be represen-ted in different domains. However, designing an EEG-based BCI system withoutany transformation technique is a challenge. For this purpose, in this study, aBCI model is proposed without any transformation. The classification of cursordown and cursor up movements using the EEG signals received from the brain isaimed at in the proposed model. The EEG patterns were classified using twomethods. Firstly, EEG signals were classified by classic convolutional neural net-work (CNN). Secondly, proposed hybrid structure obtained the EEG features,which were classified by k-NN and SVM, using CNN. Classification with CNNarchitecture gave a result of 68.15% while the hybrid method using k-NN andSVM classifiers yielded 97.55% and 97.61% respectively. The hybrid proposedmethod were more successful than the studies in the literature.