MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Derin Öğrenme ile Büyük Veri Kümelemlerinden Saldırı Türlerinin Sınıflandırılması

dc.authorscopusid57211715669
dc.authorscopusid24450038800
dc.contributor.authorAhmetoglu, H.
dc.contributor.authorDas, R.
dc.date.accessioned2025-02-15T19:38:21Z
dc.date.available2025-02-15T19:38:21Z
dc.date.issued2019
dc.departmentArtuklu Universityen_US
dc.department-tempAhmetoglu H., Mardin Artuklu Universitesi, Midyat Meslek Yüksekokulu, Bilgisayar Teknolojileri, Mardin, Turkey; Das R., Firat Üniversitesi, Teknoloji Fakultesi, Yazilim Muhendisliigi Bolumu, Elazǧ, 23119, Turkeyen_US
dc.description.abstractOne of the solutions proposed to ensure information security is intrusion detection systems. Improving the performance of these systems has been among the most important objectives of information technologies. In this study, a detailed analysis of the explicitly presented CICIDS2017 data set was performed. The data set was rearranged by collecting different types of attacks under the same heading for binary classification. For multiple classifications, all files it contains are combined. Using the new version of the data set, a sample model has been developed with the Full Linked Artificial Neural Network, which is one of the machine learning techniques. This model is encoded with TensorFlow-Keras libraries and classified using network traffic properties. The success of the dual classification results and the multiple classification successes were compared. Multiple classification can include the type of attack. On the other hand, in case of dual classification, the attack is present and no attack status is examined. The success rate of binary classification is expected to reduce false alarm conditions in intrusion detection systems. © 2019 IEEE.en_US
dc.description.provenanceSubmitted by GCRIS Admin (gcris@artuklu.edu.tr) on 2025-02-15T19:38:21Z No. of bitstreams: 0en
dc.description.provenanceMade available in DSpace on 2025-02-15T19:38:21Z (GMT). No. of bitstreams: 0 Previous issue date: 2019en
dc.identifier.citationcount3
dc.identifier.doi10.1109/IDAP.2019.8875872
dc.identifier.isbn9781728129327
dc.identifier.scopus2-s2.0-85074886878
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/IDAP.2019.8875872
dc.identifier.urihttps://hdl.handle.net/20.500.12514/6231
dc.identifier.wosqualityN/A
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019 -- 2019 International Conference on Artificial Intelligence and Data Processing Symposium, IDAP 2019 -- 21 September 2019 through 22 September 2019 -- Malatya -- 153040en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial Neural Networksen_US
dc.subjectDeep Learningen_US
dc.subjectIntrusion Detection Systemen_US
dc.subjectMachine Learningen_US
dc.titleDerin Öğrenme ile Büyük Veri Kümelemlerinden Saldırı Türlerinin Sınıflandırılmasıen_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files