MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Mental activity detection from EEG records using local binary pattern method [Yerel ikili örüntü yöntemi kullanarak EEG kayitlarindan mental aktivite tespiti]

dc.contributor.authorTürk Ö.
dc.contributor.authorÖzerdem M.S.
dc.date.accessioned14.07.201910:50:10
dc.date.accessioned2019-07-16T20:42:33Z
dc.date.available14.07.201910:50:10
dc.date.available2019-07-16T20:42:33Z
dc.date.issued2017
dc.department[Belirlenecek]en_US
dc.department-tempTürk, Ö., Midyat Meslek Yüksekokulu, Mardin Artuklu Üniversitesi, Mardin, Turkey -- Özerdem, M.S., Elektrik-Elektronik Mühendisligi, Dicle Üniversitesi, Diyarbakir, Turkeyen_US
dc.description2017 International Artificial Intelligence and Data Processing Symposium, IDAP 2017 -- 16 September 2017 through 17 September 2017 -- -- 115012en_US
dc.description.abstractElectroencephalogram signals are widely used in the detection of different activities but not in the desired level. In this study with this motivation, it is aimed to obtain the attributes by using the Local Bilinear Pattern (LBP) method of EEG records for various mental activities and to classify these features by k-Nearest Neighbor (k-NN) method. The binary classification performance of these EEG records containing 5 mental tasks was evaluated. In addition, in order to evaluate classification performance, confusion matrix was used as model performance criterion. In the study, the average of the classification performance of all participants was found as 87.38%. As a model performance criterion from the participants' classification of mental activity, accuracy was 85.03%, precision was 85.40% and sensitivity was 85.47%. So, as a result the obtained results support the literature and the applicability of the LBP method for EEG markings has been confirmed. © 2017 IEEE.en_US
dc.description.provenanceSubmitted by Ideal DSpace (dspace@artuklu.edu.tr) on 14.07.201910:50:10en
dc.description.provenanceMade available in DSpace on 2019-07-16T20:42:33Z (GMT). No. of bitstreams: 0 Previous issue date: 2017en
dc.identifier.doi10.1109/IDAP.2017.8090271
dc.identifier.isbn9781538618806
dc.identifier.scopus2-s2.0-85039907242
dc.identifier.urihttps://dx.doi.org/10.1109/IDAP.2017.8090271
dc.identifier.urihttps://hdl.handle.net/20.500.12514/1144
dc.indekslendigikaynakScopusen_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofIDAP 2017 - International Artificial Intelligence and Data Processing Symposiumen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectK-NNen_US
dc.subjectLocal binary patternen_US
dc.subjectMental activitiesen_US
dc.titleMental activity detection from EEG records using local binary pattern method [Yerel ikili örüntü yöntemi kullanarak EEG kayitlarindan mental aktivite tespiti]en_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files