MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Mental activity detection from EEG records using local binary pattern method [Yerel ikili örüntü yöntemi kullanarak EEG kayitlarindan mental aktivite tespiti]

dc.contributor.author Türk, Ömer
dc.contributor.author Özerdem M.S.
dc.contributor.other Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.date.accessioned 14.07.201910:50:10
dc.date.accessioned 2019-07-16T20:42:33Z
dc.date.available 14.07.201910:50:10
dc.date.available 2019-07-16T20:42:33Z
dc.date.issued 2017
dc.department [Belirlenecek] en_US
dc.department-temp Türk, Ö., Midyat Meslek Yüksekokulu, Mardin Artuklu Üniversitesi, Mardin, Turkey -- Özerdem, M.S., Elektrik-Elektronik Mühendisligi, Dicle Üniversitesi, Diyarbakir, Turkey en_US
dc.description 2017 International Artificial Intelligence and Data Processing Symposium, IDAP 2017 -- 16 September 2017 through 17 September 2017 -- -- 115012 en_US
dc.description.abstract Electroencephalogram signals are widely used in the detection of different activities but not in the desired level. In this study with this motivation, it is aimed to obtain the attributes by using the Local Bilinear Pattern (LBP) method of EEG records for various mental activities and to classify these features by k-Nearest Neighbor (k-NN) method. The binary classification performance of these EEG records containing 5 mental tasks was evaluated. In addition, in order to evaluate classification performance, confusion matrix was used as model performance criterion. In the study, the average of the classification performance of all participants was found as 87.38%. As a model performance criterion from the participants' classification of mental activity, accuracy was 85.03%, precision was 85.40% and sensitivity was 85.47%. So, as a result the obtained results support the literature and the applicability of the LBP method for EEG markings has been confirmed. © 2017 IEEE. en_US
dc.identifier.doi 10.1109/IDAP.2017.8090271
dc.identifier.isbn 9781538618806
dc.identifier.scopus 2-s2.0-85039907242
dc.identifier.uri https://dx.doi.org/10.1109/IDAP.2017.8090271
dc.identifier.uri https://hdl.handle.net/20.500.12514/1144
dc.indekslendigikaynak Scopus en_US
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof IDAP 2017 - International Artificial Intelligence and Data Processing Symposium en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject K-NN en_US
dc.subject Local binary pattern en_US
dc.subject Mental activities en_US
dc.title Mental activity detection from EEG records using local binary pattern method [Yerel ikili örüntü yöntemi kullanarak EEG kayitlarindan mental aktivite tespiti] en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication d7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscovery d7a05184-8649-4d7a-9ede-47416afad38e
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files