MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Comparison and Optimization of Machine Learning Methods for Fault Detection in District Heating and Cooling Systems

No Thumbnail Available

Date

2025

Journal Title

Journal ISSN

Volume Title

Publisher

Polska Akademia Nauk

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Organizational Unit
Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
Bölümde çağdaş teknolojik gelişmeler doğrultusunda, teknolojiyi yakından takip ederek yeni teknoloji ve uygulamaların geliştirilmesine katkı sağlamak amacıyla, nitelikli bilgisayar mühendisleri yetiştirilmesi amaçlanmaktadır. Eğitimler kapsamında, özellikle yapay zeka, makine öğrenmesi, derin öğrenme, görüntü işleme, sinyal işleme, büyük veri ve veri madenciliği, nesnelerin interneti gibi teknolojik konularda hem teorik hem de uygulamalı bir eğitim modeli hedeflenmektedir.

Journal Issue

Events

Abstract

In this study, the methods used for the detection of sub-station pollution failures in district heating and cooling (DHC) systems are analyzed. In the study, high, medium, and low-level pollution situations are considered and machine learning methods are applied for the detection of these failures. Random forest, decision tree, logistic regression, and CatBoost regression algorithms are compared within the scope of the analysis. The models are trained to perform fault detection at different pollution levels. To improve the model performance, hyperparameter optimization was performed with random search optimization, and the most appropriate values were selected. The results show that the CatBoost regression algorithm provides the highest accuracy and overall performance compared to other methods. The CatBoost model stood out with an accuracy of 0.9832 and a superior performance. These findings reveal that CatBoost-based approaches provide an effective solution in situations requiring high accuracy, such as contamination detection in DHC systems. The study makes an important contribution as a reliable fault detection solution in industrial applications. © 2025 The Author(s).

Description

Keywords

Dhc, Grid Search Optimization, Machine Learning, Pollution Detection

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q4

Scopus Q

Q3

Source

Bulletin of the Polish Academy of Sciences: Technical Sciences

Volume

73

Issue

3

Start Page

End Page