MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

MENTAL ACTIVITY DETECTION FROM EEG RECORDS USING LOCAL BINARY PATTERN METHOD

dc.contributor.authorTurk, Omer
dc.contributor.authorOzerdem, Mehmet Sirac
dc.contributor.authorTürk, Ömer
dc.date.accessioned14.07.201910:50:10
dc.date.accessioned2019-07-16T20:43:57Z
dc.date.available14.07.201910:50:10
dc.date.available2019-07-16T20:43:57Z
dc.date.issued2017
dc.department[Belirlenecek]en_US
dc.department-temp[Turk, Omer] Mardin Artuklu Univ, Midyat Meslek Yuksekokulu, Mardin, Turkey -- [Ozerdem, Mehmet Sirac] Dicle Univ, Elekt Elekt Muhendisligi, Diyarbakir, Turkeyen_US
dc.description2017 International Artificial Intelligence and Data Processing Symposium (IDAP) -- SEP 16-17, 2017 -- Malatya, TURKEYen_US
dc.description.abstractElectroencephalogram signals are widely used in the detection of different activities but not in the desired level. In this study with this motivation, it is aimed to obtain the attributes by using the Local Bilinear Pattern (LBP) method of EEG records for various mental activities and to classify these features by k-Nearest Neighbor (k-NN) method. The binary classification performance of these EEG records containing 5 mental tasks was evaluated. In addition, in order to evaluate classification performance, confusion matrix was used as model performance criterion. In the study, the average of the classification performance of all participants was found as 87.38%. As a model performance criterion from the participants' classification of mental activity, accuracy was 85.03%, precision was 85.40% and sensitivity was 85.47%. So, as a result the obtained results support the literature and the applicability of the LBP method for EEG markings has been confirmed.en_US
dc.description.sponsorshipIEEE Turkey Sect, Anatolian Scien_US
dc.identifier.isbn978-1-5386-1880-6
dc.identifier.urihttps://hdl.handle.net/20.500.12514/1309
dc.identifier.wosWOS:000426868700111
dc.indekslendigikaynakWeb of Scienceen_US
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLocal Binary Patternen_US
dc.subjectMental Activitiesen_US
dc.subjectk-NNen_US
dc.titleMENTAL ACTIVITY DETECTION FROM EEG RECORDS USING LOCAL BINARY PATTERN METHODen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationd7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscoveryd7a05184-8649-4d7a-9ede-47416afad38e

Files