MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

MENTAL ACTIVITY DETECTION FROM EEG RECORDS USING LOCAL BINARY PATTERN METHOD

dc.contributor.author Turk, Omer
dc.contributor.author Ozerdem, Mehmet Sirac
dc.contributor.author Türk, Ömer
dc.contributor.other Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.date.accessioned 14.07.201910:50:10
dc.date.accessioned 2019-07-16T20:43:57Z
dc.date.available 14.07.201910:50:10
dc.date.available 2019-07-16T20:43:57Z
dc.date.issued 2017
dc.department [Belirlenecek] en_US
dc.department-temp [Turk, Omer] Mardin Artuklu Univ, Midyat Meslek Yuksekokulu, Mardin, Turkey -- [Ozerdem, Mehmet Sirac] Dicle Univ, Elekt Elekt Muhendisligi, Diyarbakir, Turkey en_US
dc.description 2017 International Artificial Intelligence and Data Processing Symposium (IDAP) -- SEP 16-17, 2017 -- Malatya, TURKEY en_US
dc.description.abstract Electroencephalogram signals are widely used in the detection of different activities but not in the desired level. In this study with this motivation, it is aimed to obtain the attributes by using the Local Bilinear Pattern (LBP) method of EEG records for various mental activities and to classify these features by k-Nearest Neighbor (k-NN) method. The binary classification performance of these EEG records containing 5 mental tasks was evaluated. In addition, in order to evaluate classification performance, confusion matrix was used as model performance criterion. In the study, the average of the classification performance of all participants was found as 87.38%. As a model performance criterion from the participants' classification of mental activity, accuracy was 85.03%, precision was 85.40% and sensitivity was 85.47%. So, as a result the obtained results support the literature and the applicability of the LBP method for EEG markings has been confirmed. en_US
dc.description.sponsorship IEEE Turkey Sect, Anatolian Sci en_US
dc.identifier.isbn 978-1-5386-1880-6
dc.identifier.uri https://hdl.handle.net/20.500.12514/1309
dc.identifier.wos WOS:000426868700111
dc.indekslendigikaynak Web of Science en_US
dc.language.iso tr en_US
dc.publisher IEEE en_US
dc.relation.ispartof 2017 INTERNATIONAL ARTIFICIAL INTELLIGENCE AND DATA PROCESSING SYMPOSIUM (IDAP) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Local Binary Pattern en_US
dc.subject Mental Activities en_US
dc.subject k-NN en_US
dc.title MENTAL ACTIVITY DETECTION FROM EEG RECORDS USING LOCAL BINARY PATTERN METHOD en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication d7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscovery d7a05184-8649-4d7a-9ede-47416afad38e
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files