MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Türkçe Otel Yorumlarıyla Eğitilen Kelime Vektörü Modellerinin Duygu Analizi ile İncelenmesi

dc.authorid 0000-0002-4320-0198
dc.authorid 0000-0002-6113-4649
dc.contributor.author Ahmetoğlu, Hüseyin
dc.contributor.author Daş, Resul
dc.date.accessioned 2021-06-22T07:35:23Z
dc.date.available 2021-06-22T07:35:23Z
dc.date.issued 2020
dc.department MAÜ, Meslek Yüksekokulları, Midyat Meslek Yüksekokulu, Bilgisayar Programcılığı Bölümü en_US
dc.description.abstract Doğal dil işlemenin(Natural Language Processing-NLP) ve metin sınıflandırmanın önemli araştırma alanlarından biri de duygu analizidir. Bu alanda çalışmalar hızla büyümektedir. Bu teknik dijital yaşamın her çeşit uygulama alanında kendini göstermektedir. Duygu analizi için geliştirilen birçok teknik vardır ancak son zamanlarda doğal dil işlemenin kelime vektör modeli metotları duygu analizinde yaygın olarak kullanılmaya başlamıştır. Word2Vec kelimeleri anlamlı vektörlere dönüştürebilen en kullanışlı kelime vektör modeli yöntemleri arasındadır. Bu yöntem ile kelime vektörleri oluşturabilmek için büyük kelime havuzlarına ihtiyaç vardır. Önceden eğitilmiş modeller duygu analizinde daha doğru sonuçlara ulaşabilmeyi mümkün kılarlar. Bu çalışmada duygu analizinde incelenmek üzere, onaylanmış kullanıcıların Türkçe otel yorumları veri kazıma yöntemleri ile toplanmıştır. Elde edilen bu özgün veriler Word2Vec ile eğitilerek kelime vektörleri oluşturulmuştur. Bu vektörler ile tekrarlanan yapay sinir ağının (Recurrent Neural Networks-RNN) bir çeşidi olan geçitli tekrarlayan birimler (Gated Recurrent Unit-GRU) ile bir sınıflandırma modeli geliştirilmiştir. Daha geniş kelime torbalarıyla eğitilmiş kelime vektörleri ile rastgele değerler atanarak oluşturulan vektörler, aynı derin öğrenme yöntemiyle yeniden incelenmiş ve elde edilen sınıflandırma başarıları karşılaştırılmıştır. Elde edilen sonuçlara göre özel alandan bağımsız, daha geniş kapsamlı kelime torbalarının sınıflandırma başarısını arttırdığı gözlemlenmiştir. en_US
dc.description.abstract One of the important research areas of Natural Language Processing and text classification is sentiment analysis. Studies in this area are growing rapidly. This technique manifests itself in all kinds of applications of digital life. There are many techniques developed for sentiment analysis, but recently, word embedding methods of natural language processing have become widely used in sentiment analysis. Word2Vec is one of the most useful word embedding methods that can convert words into meaningful vectors. In order to create word vectors with this method, large word pools are needed. Pre-trained models make it possible to achieve more accurate results in sentiment analysis. In this study, Turkish hotel reviews of approved users were collected by data scraping methods for examination of sentiment analysis. Obtained from the original data by training with Word2Vec word vectors were created. With these vectors, a classification model has been developed with Gated Recurrent Unit which is a kind of Recurrent Neural Networks. The vectors formed by assigning random values to wider corpus-trained word vectors were re-examined with the same deep learning method and the obtained classification successes were compared. According to the results, it was observed that the broader corpus independent of the private area increased the success of classification. en_US
dc.description.citation Ahmetoğlu, H , Daş, R . (2020). Türkçe Otel Yorumlarıyla Eğitilen Kelime Vektörü Modellerinin Duygu Analizi ile İncelenmesi . Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi , 24 (2) , 455-463 . DOI: 10.19113/sdufenbed.645579 en_US
dc.identifier.doi 10.19113/sdufenbed.645579
dc.identifier.endpage 463 en_US
dc.identifier.issn 1300-7688
dc.identifier.issn 1308-6529
dc.identifier.issue 2 en_US
dc.identifier.startpage 455 en_US
dc.identifier.uri https://app.trdizin.gov.tr/makale/TXpnMU5UazBOQT09/turkce-otel-yorumlariyla-e-gitilen-kelime-vektoru-modellerinin-duygu-analizi-ile-incelenmesi
dc.identifier.uri https://doi.org/10.19113/sdufenbed.645579
dc.identifier.uri https://hdl.handle.net/20.500.12514/2578
dc.identifier.volume 24 en_US
dc.indekslendigikaynak TR-Dizin en_US
dc.language.iso tr en_US
dc.publisher Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi en_US
dc.relation.ispartof Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Doğal dil işleme, Veri kazıma, Duygu analizi, Yinelenen yapay sinir ağı, Word2Vec, Kelime Gömme en_US
dc.subject Natural language processing, Data scraping, Sentiment analysis, Recurrent neural networks, Word2Vec, Word embeddings en_US
dc.title Türkçe Otel Yorumlarıyla Eğitilen Kelime Vektörü Modellerinin Duygu Analizi ile İncelenmesi en_US
dc.title.alternative Investigation of Word Vector Models Trained with Turkish Hotel Comments by Sentiment Analysis en_US
dc.type Article en_US
dspace.entity.type Publication
relation.isAuthorOfPublication c32fb0d5-bfd6-4e6e-92c6-1978593bce3b
relation.isAuthorOfPublication.latestForDiscovery c32fb0d5-bfd6-4e6e-92c6-1978593bce3b

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
e5cff7d3-4a1f-4573-b604-551d08603cc6.pdf
Size:
935.69 KB
Format:
Adobe Portable Document Format
Description:
Araştırma Makalesi

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: