MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Classification of mental task EEG records using Hjorth parameters [Mental Aktivitelere ilişkin EEG Kayitlarinin Hjorth Parametreleri ile Siniflandirilmasi]

dc.contributor.authorTurk O.
dc.contributor.authorSeker M.
dc.contributor.authorAkpolat V.
dc.contributor.authorOzerdem M.S.
dc.date.accessioned14.07.201910:50:10
dc.date.accessioned2019-07-16T20:42:33Z
dc.date.available14.07.201910:50:10
dc.date.available2019-07-16T20:42:33Z
dc.date.issued2017
dc.department[Belirlenecek]en_US
dc.department-tempTurk, O., Midyat Meslek Yüksekokulu, Mardin Artuklu Üniversitesi, Mardin, Turkey -- Seker, M., Elektrik-Elektronik Mühendisligi, Dicle Üniversitesi, Diyarbakir, Turkey -- Akpolat, V., Tip Fakültesi, Dicle Üniversitesi, Diyarbakir, Turkey -- Ozerdem, M.S., Midyat Meslek Yüksekokulu, Mardin Artuklu Üniversitesi, Mardin, Turkeyen_US
dc.description25th Signal Processing and Communications Applications Conference, SIU 2017 -- 15 May 2017 through 18 May 2017 -- -- 128703en_US
dc.description.abstractThe effects of mental activities on brain dynamics is the main field that studied for a long time, but the results of studies have not reached the desired level. The aim of present study was to classify the mental task EEG records by using Hjorth parameters. In this study, EEG signals that recorded from 9 subjects were used. EEG signals were recorded by applying a experimental paradigm which contains five stimuli related to different mental task. These stimuli are defined as condition word mental subtraction spatial navigation right hand motor imagery and feet motor imagery Wavelet packet transform was used to obtain sub-bands of EEG signals. Statistical parameters that consist of mobility, complexity and Mahalanobis distance were applied to sub-bands. Feature vectors were classified by using artificial neural network. When classification performances related to mental activities were examined, the best classification accuracy was obtained as nearly 80% for 'condition word - mental subtraction', ('spatial navigation - feet motor imagery;' and 'spatial navigation - condition word'. The lowest classification accuracy was obtained for 'mental subtraction - right hand motor imagery,', 'condition word - right hand motor imagery' and 'spatial navigation - right hand motor imagery'. The classification accuracies related to all stimuli that classifed among themselves were obtained as 77,61%. © 2017 IEEE.en_US
dc.description.provenanceSubmitted by Ideal DSpace (dspace@artuklu.edu.tr) on 14.07.201910:50:10en
dc.description.provenanceMade available in DSpace on 2019-07-16T20:42:33Z (GMT). No. of bitstreams: 0 Previous issue date: 2017en
dc.identifier.doi10.1109/SIU.2017.7960608
dc.identifier.isbn9781509064946
dc.identifier.scopus2-s2.0-85026313914
dc.identifier.urihttps://dx.doi.org/10.1109/SIU.2017.7960608
dc.identifier.urihttps://hdl.handle.net/20.500.12514/1148
dc.indekslendigikaynakScopusen_US
dc.language.isotren_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2017 25th Signal Processing and Communications Applications Conference, SIU 2017en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHjorth Parametersen_US
dc.subjectMental Tasken_US
dc.subjectWaveler Packet Decompositionen_US
dc.titleClassification of mental task EEG records using Hjorth parameters [Mental Aktivitelere ilişkin EEG Kayitlarinin Hjorth Parametreleri ile Siniflandirilmasi]en_US
dc.typeConference Objecten_US
dspace.entity.typePublication

Files