Classification of mental task EEG records using Hjorth parameters [Mental Aktivitelere ilişkin EEG Kayitlarinin Hjorth Parametreleri ile Siniflandirilmasi]

dc.contributor.author Türk, Ömer
dc.contributor.author Seker M.
dc.contributor.author Akpolat V.
dc.contributor.author Ozerdem M.S.
dc.contributor.other 08.01. Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.contributor.other 08. Faculty of Engineering and Architecture / Mühendislik Mimarlık Fakültesi
dc.contributor.other 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi
dc.date.accessioned 14.07.201910:50:10
dc.date.accessioned 2019-07-16T20:42:33Z
dc.date.available 14.07.201910:50:10
dc.date.available 2019-07-16T20:42:33Z
dc.date.issued 2017
dc.description 25th Signal Processing and Communications Applications Conference, SIU 2017 -- 15 May 2017 through 18 May 2017 -- -- 128703 en_US
dc.description.abstract The effects of mental activities on brain dynamics is the main field that studied for a long time, but the results of studies have not reached the desired level. The aim of present study was to classify the mental task EEG records by using Hjorth parameters. In this study, EEG signals that recorded from 9 subjects were used. EEG signals were recorded by applying a experimental paradigm which contains five stimuli related to different mental task. These stimuli are defined as condition word mental subtraction spatial navigation right hand motor imagery and feet motor imagery Wavelet packet transform was used to obtain sub-bands of EEG signals. Statistical parameters that consist of mobility, complexity and Mahalanobis distance were applied to sub-bands. Feature vectors were classified by using artificial neural network. When classification performances related to mental activities were examined, the best classification accuracy was obtained as nearly 80% for 'condition word - mental subtraction', ('spatial navigation - feet motor imagery;' and 'spatial navigation - condition word'. The lowest classification accuracy was obtained for 'mental subtraction - right hand motor imagery,', 'condition word - right hand motor imagery' and 'spatial navigation - right hand motor imagery'. The classification accuracies related to all stimuli that classifed among themselves were obtained as 77,61%. © 2017 IEEE. en_US
dc.identifier.doi 10.1109/SIU.2017.7960608
dc.identifier.isbn 9781509064946
dc.identifier.scopus 2-s2.0-85026313914
dc.identifier.uri https://dx.doi.org/10.1109/SIU.2017.7960608
dc.identifier.uri https://hdl.handle.net/20.500.12514/1148
dc.indekslendigikaynak Scopus en_US
dc.language.iso tr en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2017 25th Signal Processing and Communications Applications Conference, SIU 2017 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Hjorth Parameters en_US
dc.subject Mental Task en_US
dc.subject Waveler Packet Decomposition en_US
dc.title Classification of mental task EEG records using Hjorth parameters [Mental Aktivitelere ilişkin EEG Kayitlarinin Hjorth Parametreleri ile Siniflandirilmasi] en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.description.department [Belirlenecek] en_US
gdc.description.departmenttemp Turk, O., Midyat Meslek Yüksekokulu, Mardin Artuklu Üniversitesi, Mardin, Turkey -- Seker, M., Elektrik-Elektronik Mühendisligi, Dicle Üniversitesi, Diyarbakir, Turkey -- Akpolat, V., Tip Fakültesi, Dicle Üniversitesi, Diyarbakir, Turkey -- Ozerdem, M.S., Midyat Meslek Yüksekokulu, Mardin Artuklu Üniversitesi, Mardin, Turkey en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.scopus.citedcount 18
relation.isAuthorOfPublication d7a05184-8649-4d7a-9ede-47416afad38e
relation.isAuthorOfPublication.latestForDiscovery d7a05184-8649-4d7a-9ede-47416afad38e
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication b4a7a54e-df38-44d5-9f03-ab3ce38ad8a8
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files