Sağlık Hizmetleri Meslek Yüksekokulu
Permanent URI for this communityhttps://hdl.handle.net/20.500.12514/32
Browse
Browsing Sağlık Hizmetleri Meslek Yüksekokulu by Access Right "info:eu-repo/semantics/restrictedAccess"
Now showing 1 - 11 of 11
- Results Per Page
- Sort Options
Conference Object FABRICATION AND EVALUATION OF POLYDOPAMINE (PDA) COATED HEXAGONAL BORON NITRIDE (HBN) MODIFIED POLYDIMETHYLSILOXANE (PDMS) 3D POROUS SCAFFOLD FOR IMPROVE OSSEOINTEGRATION(2020)ABSTRACT: Purpose: Our goal is to enhance poor performance in supporting cell growth and proliferation in osseointegration. Herein, we fabricated a new scaffold material which was Polydimethylsiloxane (PDMS) based 3D structure, biocompatibility, cytocompatibility, and porous. Materials and Methods: In this study, the scaffold was fabricated as polydopamine (PDA) coated hexagonal boron nitride (hBN) embedded in PDMS. First, 3D porous structure PDMS was prepared using two agents of PDMS with the salt scaffold method. In the second step, the scaffold was prepared with PDA coated hBN was embedded in PDMS. Nowadays, the application of PDA as a superior surface modifier in multifunctional biomaterials is drawing tremendous interests in bone tissue scaffolds to promote the osseointegration for bone regeneration. The hBN was used to increase the durability of PDMS. Because, it possesses preeminent physical and chemical properties such as high chemical stability, temperature-resistant, high thermal conductivity, low density, good mechanical strength, anti oxidation ability, and biocompatibility. To perfectly the cells adhere to the surface, the hBN was coated with PDA. In the third step, the prepared scaffold was mineralized for the proliferation of cells. Results: The prepared PDMS-based 3D scaffolds were characterized by Raman and Fourier transform infrared (FT-IR) spectroscopies. The structure of morphology was studied using the scanning electron microscope (SEM). The compression and tensile stress as mechanical properties of the scaffolds were evaluated for the PDMS, PDMS- hBN-PDA, and its mineralized form PDMS- hBN-PDA-Min. The results of the tensile strength scaffolds of PDMS-hBN-PDA-Dry and PDMS-hBN-PDA-Wet were calculated 588.4 kPa and 614.7 kPa, respectively. However, the tensile strength of 3D PDMS-Dry and PDMS-Wet were calculated 285.3 kPa and 423.2 kPa, respectively. The tensile strength value of PDMS hBN-PDA-Dry was 53.6 % higher than that of 3D PDMS-Dry scaffold and also, elongation at break value of PDMS-hBN-PDA-Dry was 16.7 % higher than that of pristine PDMS-Dry scaffold. The contact angles were measured for the PDMS, PDMS- hBN-PDA, and PDMS- hBN-PDA-Min. scaffolds with deionized water droplets. The average contact angles (CAs) other mean surface wettability is a very important parameter for cell adhesion performance. The CAs were measured for the PDMS, PDMS hBN-PDA, and its mineralized form PDMS- hBN-PDA-Min scaffolds with deionized water droplets. The CAs of the PDMS was measured 87.6° ± 1.15 and after hBN-PDA was dispersed in PDMS its decreased around 72.1° ± 1.69. This lower CA was related to PDA containing the hydrophilic groups such as catechol, amide, and imide groups. Furthermore, after the mineralization process, the CA was decrease than before and it was found around 71.3° ± 1.20. This is because the catechol group of PDA was capturing some cations such as Ca2+ and K+ . The literature shows that the CA of scaffolds is at around 65°–70° the appropriate values for the cell adhesion and proliferation. The thermal stability and degradation mechanism of scaffolds were investigated using Thermogravimetric analysis (TGA). According to the results, while embedding hBN in PDMS showed higher resistance to temperature than pristine PDMS, the mineralization process showed the same curve as PDMS. Conclusion: In conclusion, PDMS is routinely used as a biomedical implant material and for fundamental cellular studies and has been confirmed as a biocompatible material. Moreover, the hBN used in the fabrication of scaffold is a novel nanostructure it has excellent properties such as high mechanical strengths, large surface area, and outstanding biocompatibilities. The application of PDA as a superior surface modifier in multifunctional biomaterials will be drawing tremendous interests in bone tissue scaffolds to promote the osteointegration for bone regeneration. Considering all these features and the results of characterization studies, we foresee that the prepared PDMS-hBN-PDA can be used as a perfect scaffold material in the future for cell adhesion and proliferation in osseointegration. Besides, a new 3D scaffold model based on PDMS was designed for bone tissue. Key Words: Bone repairing materials, Polydimethylsiloxane, Hexagonal boron nitride nanoparticles, dopamine, Scaffold.Book Part HASTALIK TESPİTİ VE TEDAVİSİNDE BOR BAZLI KÜÇÜK MOLEKÜLLER(2022)Bor, boyut olarak karbona benzer bir yapı ile hem sp2 hem de sp3 formlarını alarak karbonu birçok yönden taklit edebilir. Nötr durumda üç değerlikli formunda, açık bir kabuğa sahip olması bakımından da benzersizdir. Bu nedenle, iyi bir Lewis asidi aynı zamanda ‘sıcak’ bir elektrofildir. Bor’un ek bir özelliği de nötron bombardımanı altında alfa parçacıkları yayma yeteneğine sahip olmasıdır. Bu özellik aynı zamanda Bor Nötron Yakalama Terapisinde (BNCT) bor bazlı moleküllerin kullanılmasının da temelini oluşturmaktadır. Son yıllarda, potansiyel terapötikler ve tespit uygulamaları için bor bazlı bileşiklerin tasarımında ve sentezinde muazzam bir gelişme olmuştur. Bu bölümde hazırlamış olduğumuz bu derleme ağırlıklı olarak Thareja, ve arkadaşları tarafından ele alınan süreçlerin ve olası sonuçların daha iyi anlaşılabilir olmasını sağlamak açısından, klinik olarak kullanılan ixazomib, tavaborole, crisaborole ve diğer molekülleri kapsayan bor bazlı küçük moleküllerin en son gelişimine vurgu yapmış olmaları sonucu konuya odaklaşmamızı sağlayarak bu derlemeye her yönden önemli derecede büyük katkı sağlamıştır [1]. Bu derleme dört bölümden oluşmaktadır: tespit ve algılama, karbonhidratlara bağlanma yoluyla hastalık tedavisi, diğer biyolojik hedeflere bağlanma yoluyla hastalık tedavisi ve BNCT. Bu alanlarda daha önceki çalışmaları kapsayan birçok iyi inceleme, kitap bölümü mevcuttur [1–11]. Hastalık tespitinde, bor bazlı moleküllerin kullanımı büyük ölçüde karbonhidrat tanınmasında boronik asit (BA) grubunun bir anahtar tanıma birimi olarak rol oynamasıdır. Fizyolojik ve patolojik süreçlerde karbonhidratların çok önemli rollerini gösteren artan sayıda kanıt vardır [12-14]. Çoğu zaman karbonhidratlar, çeşitli patolojik durumlar ve değişiklikler için biyo belirteç görevi yapmaktadır. Kanserle ilişkili antijenlerin önemli bir yüzdesi karbonhidratla ilişkili olduğundan, bu durum özellikle kanserde geçerlidir [15]. Karbonhidratların hastalıktaki önemine rağmen, karbonhidrat tanıma hastalık tespiti için BA bazlı kemosensörler veya bağlayıcılar alanı hala emekleme aşamasındadır. BA’nın bu konuda çok faydalı bir fonksiyonel grup olmasının birkaç nedeni vardır. Birincisi, kovalent bağların oluşumunu sağlayan hidroksil grupları gibi Lewis bazları için güçlü bir afiniteye sahip bir Lewis asididir.İkincisi, kovalent bağ oluşumu sulu çözeltide tersine çevrilebilir, bu çok önemlidir çünkü bağlanmadaki bu tersine çevrilebilirlik, konsantrasyon değişikliklerine yanıt olarak karbonhidratların dinamik bir şekilde saptanması için kritiktir. Üçüncüsü, birçok BA, bağ lanmaya yanıt olarak spektroskopik özellikleri değiştirecek şekilde tasarlanmıştır. Bu, hassas algılama için bir raporlama olayı verir. Dördüncüsü, BA grubu polardır ve kemosensörün suda çözünürlüğünü geliştirmeye yardımcı olur. Bu durum yakın fizyolojik koşullar altında algılama için önemlidir. Beşincisi, bir BA grubunun bir karbonhidratla bağlanma afinitesini ayarlamak için gereken parametreler iyi anlaşılmıştır [16,17]. Dolayısıyla bu durum karbonhidratlar için BA bazlı kemosensörlerin gelişimini büyük ölçüde kolaylaştırmaktadırBook Part KENEVİR LİFİ YÜZEYİNİN DEĞİŞİK YÖNTEMLERLE MODİFİKASYONU(2022)Kenevir çok eski zamanlardan beri bilinen bir bitki türüdür. Ana vatanı Orta Asya (Hindistan) olan bu bitki büyük olasılıkla bilinen en eski ekili lif bitkisidir. Tek yıllık bir bitki olup ılıman ve tropik bölgelerde yetişir. Kenevir bitkisinin dişi ve erkek olmak üzere 2 farklı şekli bulunur. Biyolojik olarak sınıflandırıldığında 3 ana türü bulunur, bunlar: • Cannabis sativa • Cannabis indica • Cannabis ruderalis olarak sıralanabilir. Kenevirdeki psikoaktif kimyasal THC’dir (delta-9 tetrahidroka nabinol). Esrar veya Hint kenevir bitkisi olarak bilinen ve temelde dişi kenevir bitkisinin çiçeğinden uyuşturucu madde elde edilir. Bu kenevir bitkisinin içeriğinde yüzde 5 ila yüzde 20 aralığında THC bulunur. Ancak endüstriyel amaçlı yetiştirilen kenevir türlerinde bu oran binde 3’ün altındadır. Yani endüstriyel hammadde üretiminde kullanılan kenevir bitkisinin uyuşturucu etkisi yoktur. Literatürde Hemp olarak bilinen bu endüstriyel amaçlı kenevir türlerinde, uyuşturucu etki gösteren psikoaktif madde (THC) içeriği oldukça düşük ve tehlikesiz sayılabilecek düzeydedir (1). Şekil 1’de kenevir bitkisinin görseli bulunmaktadır. Kenevir, sadece tıbbi amaçlı olarak en az 3 bin yıl önce kullanıldığı bilinmektedir. Mucizevi bir bitki olmasının yanı sıra Sümer tabletlerinde dört önemli bitkiden biri olarak geçen kadim bir bitkidir. Doğanın oksijen fabrikası olan kenevir, kumaş, kağıt, ilaç (medikal), yakıt yapımında, otomotiv sektörü ve kozmetik ürünlerin yapımında da kullanılır. Lifleri dayanıklı ve oldukça uzun olması sayesinde çuval, halat çanta, ağ yapımı gibi alanlarda da sıklıkla tercih edilir. Yaprakları tıpta ve kozmetikte kullanılmaktır. Tohumu ise oldukça yağlı ve besleyici olması nedeniyle yakıt ve gıda sektöründe geniş bir kullanım alanına sahiptir. Sabun yapımı ve boya yapımında da tohumlarından yararlanılır. Bunlara ek olarak; • Hayvancılık, • Toprak ve su arıtılması, • Biyoyakıt, • Kağıt, • Ayakkabı, • Kuyumculuk, • İnşaat malzemesi, • Plastik malzeme gibi endüstrinin önemli alanlarında da kullanımı mevcuttur. Şekil 2’de kenevir bitkisinin endüstride kullanım alanları gösterilmiştir (1)Conference Object MODİFİYE MANYETİK DEKSTRAN NANOKOMPOZİTİN (MD2) İLAÇ TAŞIYICI SİSTEM OLARAK SENTEZLENMESİ VE KARAKTERİZASYONU(2019)Nanoteknolojinin bir dalı olan nanotıp, oldukça spesifik bir şekilde moleküler düzeyde hasarlı bir dokuyu tamir etmek veya bir hastalığı tedavi etmeyi hedeflemektedir. Son yıllarda, kanser tedavi etkenlerinin verimliliğini arttırmak için, polimer-DNA kompleksleri (polipleksler), polimer-ilaç konjugatları ve hidrofobik ilaçları taşıyan polimer misellerin kullanımını içeren alanlara olan ilgi artmaktadır. Küçük boyutları ve mükemmel biyo-uyumlulukları sayesinde nano boyuttaki terapötik polimer ajanları, hedef bölgeye ulaşabilmek için uzun süre kan dolaşımında kalabilirler. Buna ek olarak terapötik polimer ajanların kimyasal modifikasyonu ile reseptörlere spesifik bağlanan ligandlar, kanser hücrelerine ilgisi arttırılabilir. Böylece terapinin etkinliğini belirgin bir şekilde arttırabilirler. Bu tür çalışmalar, polimerik nanotıbbın gelecekte kanserin karakteristik özelliklerine göre nano-ilaç hedefleme olanaklarını ve mantıklı yaklaşımların geliştirilmesine olanak sağlayacağını özetler. Bu amaç doğrultusunda terapötik ajanları taşımaya elverişli, biyomedikal uygulamalarda kullanılmak üzere uygun boyutta, manyetik ve kimyasal özelliklere sahip, manyetik hedeflendirme yapılabilen, ilaç yükleme verimi yüksek, karboksil grupları ile dallanmış polimerik materyallerin sentezlenmesi ve karakterize edilmesi amaçlanmıştır. Bu çalışmada O-Karboksimetil Dekstran sentezlenip XPS ile karakterizasyonu sağlanmıştır.Conference Object N-METİL-D-GLUKAMİN MODİFİYELİ MANYETİK NANO-SORBENTİN TOLUİDİN BLUE BOYASININ ADSORPSİYONU İÇİN KULLANILMASI(2019)Toluidin Blue sanayide yoğun olarak kullanılan katyonik bir boyadır. Bu çalışma, Toluidin Blue boyasının sulu çözeltiden uzaklaştırılması amacı ile silika kaplı nanoparçacıklara bağlı olan bromun önce azid ile yer değiştirmesi gerçekleştirilmiştir. Sonrasında metil propiolat ile silika kaplı nanoparçacıklara bağlı azid grubu arasında reaksiyon meydana gelmiştir. Bu reaksiyonun kullanılması sonucu oluşan silika kaplı nanoparçacıklara bağlı, triazol halkası içeren ester ile N-metil D-glukamin arasında nükleofilik katılma reaksiyonu ile manyetik özellik kazandırılmış nano sorbentin sentezi ve basit ve etkili olan manyetik ayırma yöntemi ile uzaklaştırılmasını araştırmak için yapılmıştır. Sentezlenen. N-metil-D-glukamin modifiyeli manyetik nano-sorbentin kimyasal yapısı ve manyetik özelliği, transmisyon elektron mikroskobu (TEM) ve titreşim örnek manyetometre (VSM) ile karakterize edildi. N-metil-D-glukamin modifiyeli manyetik nano-sorbent ile Toluidin Blue boyasının adsorpsiyonu üzerine temas süresi, başlangıçtaki Toluidin Blue boyasının konsantrasyonu ve başlangıç çözelti pH'ının parametre etkileri araştırılmıştır. N-metil-D-glukamin modifiyeli manyetik nano-sorbent ile Toluidin Blue boyasının adsorpsiyonu, pH 7'de 100 mg / L boya çözeltisine 50 mg N-metil-D-glukamin modifiyeli manyetik nano-sorbent uygulamasıyla %87 olmuştur. Veriler, adsorpsiyonun denge özelliklerini açıklamak için Langmuir ve Freundlich izotermleri kullanılarak analiz edildi. Deney verileri Langmuir adsorpsiyon izoterm modeliyle iyi bir şekilde uygun olduğunu göstermiştir. Langmuir izotermine modeline göre maksimum adsorpsiyon kapasitesi 16.50 mg/g olarak bulundu. Sonuçlar N-metil-D-glukamin modifiyeli manyetik nano sorbentin sulu çözeltiden Toluidin Blue boyasını etkili bir şekilde uzaklaştırıldığını göstermiştir.Presentation Synthesis and Characterization Magnetic Nanocomposites as Chemotherapy Agents(2018)One of the most imp cancer cells as a side effect1,2. Studies on controlled drug release systems have increased with the aim of finding solutions to these problems3 . Controlled drug delivery systems at the nanoscale enable tumor targeting. Among the nanocarriers, biopolymer coated superparamagnetic nanoparticles have the ability to target at the desired region with an externally applied magnetic field. In this way, the drug can be safely delivery to the targeted area.3 The purpose of this study is, suitable for carrying the mentioned therapeutic agents, to have suitable magnetic, chemical and physical properties for use in biomedical applications, magnetic targeting, synthesis and characterization of branched polymeric materials with carboxyl groups4,5,6 . Biocompatible and biodegradable polymers is used as Chitosan. In addition, different derivatives of these polymers were synthesized and characterized by FTIR, TEM, SEM, EDX, DLS, XPS and VSM. As a results obtained that biocompatible and biodegradable magnetic nanocomposites were of the desired size and superparamagnetism, It has been shown that synthesized polymer coated superparamagnetic nanocomposites with these properties can be used in drug targeting studies and it is hoped that this type of work will contribute to future studies.Conference Object Synthesis and Characterization of Branched Magnetic Dextran with Carboxyl Group for Drug Delivery System(2018)Cancer is called bad urine, which is seen when an organ or tissue cells divide and multiply irregularly. It is among the major causes of death and rapidly increasing all over the world. Latest statistical information based on the number of cancer patients in the world is pointed out that more than 15 million in 2020 (World Cancer Research Fund, 2013). Such measure against a disease that threatens the world health and initiation of treatment is sometimes insufficient. Hence scientists were forced to develop new treatments. It has endemic and high mortality rates which is applied treatment methods usually chemotherapy, radiotherapy and surgery in this disease. Chemotherapy is used one of the most methods in cancer treatment. One of the most important problems of cancer chemotherapy nowadays is used that the anti-cancer drugs do not have the ability to recognize cancer cells and show toxic effects on healthy cells 1,2,3. In addition, administration of high doses of the drug is given to the body to provide a therapeutic dose concentration, this situation is causes severe side effects and systemic toxicity, and if not controlled it can result in death. Therefore, delivering the drug to target cell within the body and developing of drug delivery system providing controlled release are of great importance. In recent years, the development of the systems in which drug is delivered magnetically to the target is drawing considerable attention since it is a current issue. It is possible to eliminate the most of the problems caused by high doses of chemotherapy by using the magnetic drug delivery systems. However, in some studies in the literature, it is seen that toxicity increase in nanoparticle applications above a certain concentration even in the magnetic drug delivery systems. Therefore, it is important to design delivery systems with high drug loading capacity. The design of magnetic drug delivery systems is require consideration of several factors including magnetic properties, particle size and drug loading capacity. It is necessary to increase the number of reactive groups on the surface of nanoparticles in order to increase drug loading capacity. The polymeric nanoparticles comparison with structure of kollaidal carrier they brought together more stable in biological fluids, the polymeric structures to be more tightly controlled to provide sustained drug release and some of the advantages of polymer. In recent years that can be especially biodegradable polymeric nanoparticles implemented to in drug delivery targeted organ or tissue and can be used as DNA carriers in gene therapy take of attention. The nanoparticles can be used to purpose of drug delivery that owner physico-chemical properties such as hyperthermia property, magnetic resonance imaging (MRI) feature can view the body, biocompatibility, particle size, toxicity, surface charge, drug adsorption capacity, surface hydrophobicity, loading ratio, release kinetics and stability, It can be evaluated 4,5. The original value of this study can develop an alternative solution to studies on controlled drug release systems which is to solve problems arising from cancer chemotherapy. Polymer coated nanocarrier have the ability to be targeted to the desired site by the magnetic field applied from outside. In contrast to conventional chemotherapy, this method can only interfere with tumor cells and reduce the effect of the drug on healthy cells 6,7. For this purpose, dextran was used as biocompatible and biodegradable polymer to have suitable magnetic, chemical and physical properties for use in biomedical applications and magnetic targeting. In addition, branched magnetic dextran was synthesized by using magnetic O-carboxymethyl dextran and NαNα-Bis (carboxymethyl) -L-lysine hydrate (NTA) in order to increase the number of reactive carboxyl groups on the surface of magnetic dextran8,9,10,11,12 and synthesized branched magnetic dextran was characterized by different analytical techniques such as Transmission Electron Microscopy (TEM), scanning electron microscope (SEM), Dynamic Light Scattering Spectrometer (DLS), Vibrating Sample Magnetometer (VSM), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Photoelectron Spectroscopy (XPS). EDX, XPS, SEM, TEM, FTIR, DLS and VSM analysis techniques were used for elemental analysis, size and surface morphology, structural analysis and magnetic properties.Conference Object Synthesis and Characterization of Hexagonal Boron Nitride (hBN) for an Effective Removal of Organic Dyes: Kinetic and Equilibrium Studies(2020)In this study, hBN nanostructure was synthesized from boric acid to remove organic dyes from aqueous solution. The characteristic peaks of hBN are obtained using Raman and Fourier Transform Infrared (FT-IR) spectroscopies. However, the morphology and particle size of hBN are determined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). During the studies, various key factors such as pH of the aqueous dye solution, initial dye concentration, adsorbent dose and contact time are investigated. Additionally, equilibrium isotherm and kinetic models are studied for the removal of anionic and cationic organic dye Metanyl Yellow (MY) and Victoria Blue B (VBB), respectively. Under optimal conditions, it was found that 42.6% Methanyl Yellow (MY) and 90% Victoria Blue B (VBB) were removed from aqueous solution using the hBN nanostructure. Conference Object Synthesis and Characterization of New Magnetic Chitosan Derivative Nanocomposite as Chemotherapy Agent(2018)Abstract— The purpose of this study is, suitable for carrying the mentioned therapeutic agents, to have suitable magnetic, chemical and physical properties for use in biomedical applications, magnetic targeting, synthesis and characterization of branched polymeric materials with carboxyl groups .Biocompatible and biodegradable polymers is used as Chitosan. In addition, different derivatives of these polymers were synthesized and characterized by FTIR, TEM, SEM, EDX, DLS, XPS and VSM. As a results obtained that biocompatible and biodegradable magnetic nanocomposites were of the desired size and superparamagnetism, It has been shown that synthesized polymer coated superparamagnetic nanocomposites with these properties can be used in drug targeting studies and it is hoped that this type of work will contribute to future studies. Keywords—Chemotherapy Agent, Magnetic Nanocomposite, Chitosan Derivative, New SynthesisConference Object Synthesis and Characterization of Novel Branched Magnetic Chitosan Nanocomposite with Carboxyl Group for Anti-Cancer Drug Loading and Release System(2018)Background: Chemotherapy is used one of the best methods in cancer treatment. One of the most important problems of cancer chemotherapy nowadays is used that the anti-cancer drugs do not have the ability to recognize cancer cells and show toxic effects on healthy cells 1,2,3. In addition, administration of high doses of the drug is given to the body to provide a therapeutic dose concentration, this situation is causes severe side effects and systemic toxicity, and if not controlled it can result in death. Therefore, delivering the drug to target cell within the body and developing of drug delivery system providing controlled release are of great importance. In recent years, the development of the systems in which drug is delivered magnetically to the target is drawing considerable attention since it is a current issue. It is possible to eliminate the most of the problems caused by high doses of chemotherapy by using the magnetic drug delivery systems. Methods: In this study, we synthesized and characterized the novel branched carboxymethyl chitosan magnetic nanocomposite with NαNα-Bis (Carboxymethyl)-L-Lysine Hydrate (NTA)4,5,6 and drug loading and release conditions and drug loading efficiency were studied with the novel branched magnetic chitosan for the anti-cancer drug topotecan. Results: Biocompatible and biodegradable polymer was used as chitosan and the novel branched polymer was successfully synthesized and characterized with different analytical devices such as Transmission Electron Microscopy (TEM), Scanning Electron Microscope (SEM), Vibrating Sample Magnetometer (VSM), Fourier Transform Infrared Spectroscopy (FTIR), Energy Dispersive X-Ray Analysis (EDX), and X-Ray Photoelectron Spectroscopy (XPS). Drug loading and release studies were followed by High-Performance Liquid Chromatography (HPLC). Conclusions: The drug loading yield was found to 54.1% for the novel branched polymer nanocomposite. Percentage of drug released was found to 2.68 % during 90 minute and after 40 minute, it was observed that the release came to balance. On the other hand, it was found to the novel branched polymer has good drug loading capacity.Conference Object Synthesis and characterization of the branched magnetic polymer for drug delivery systems(2016)Magnetic nanoparticles (MNP) have gained a lot of attention in biomedical and industrial applications due to their biocompatibil ity, easy of surface modification and magnetic properties. Mag netic nanoparticles can be utilized in versatile ways, very similar to those of nanoparticles in general. However, the magnetic prop erties of these particles add a new dimension where they can be manipulated upon application of an external magnetic field. This property opens up new applications where drugs that are attached to a magnetic particle to be targeted in the body using a magnetic field. Often, targeting is achieved by attaching a mole cule that recognizes another molecule that is specific to the desired target area. In recent years, the development of the systems in which drug is delivered magnetically to the target is drawing considerable attention since it is a current issue. It is possible to eliminate the most of the problems caused by high doses of chemotherapy by using the magnetic drug delivery systems. Therefore, it is impor tant to design delivery systems with high drug loading capacity. It is necessary to increase the number of reactive groups on the surface of nanoparticles in order to increase drug loading capac ity. In this study, we synthesized a novel magnetic surface for drug delivery systems. Magnetic dextran-NTA (MD-NTA) was synthe sized by using magnetic O-carboxymethyl dextran (OCMD) and NaNa-Bis (carboxymethyl) -L-lysine hydrate (NTA) in order to increase the number of reactive carboxyl groups on the surface of biocompatible and biodegradable magnetic dextran. Magnetic material (MD-NTA) which was prepared and characterized by the analysis of Transmission Electron Microscopy (TEM), scan ning electron microscope (SEM), Vibrating Sample Magnetome ter (VSM), Fourier Transform Infrared Spectroscopy (FTIR) and X-Ray Photoelectron Spectroscopy (XPS).