PubMed İndeksli Yayınlar Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12514/3597
Browse
Browsing PubMed İndeksli Yayınlar Koleksiyonu by browse.metadata.publisher "BioMed Central Ltd"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 3Citation - Scopus: 3Biological Evaluation and Molecular Docking Studies of Novel Aza-Acyclic Nucleosides as Putative Antimicrobial, Anticancer, and Antioxidant Agents(BioMed Central Ltd, 2025) Alhilal, M.; Alhilal, S.; Gomha, S.M.; Farag, B.; Sabancilar, I.; Ouf, S.A.This study aimed to synthesize new aza-acyclic nucleosides (aza-acyclovir) and evaluate the efficacy of these synthetic compounds as potential antimicrobial, anticancer, and antioxidant agents. We prepared two novel aza-acyclic nucleosides via two reactions. The first reaction involved trichloroisocyanuric acid and dibenzosulphonyl diethylamine, and the second reaction involved trichloroisocyanuric acid and diethanolamine. We then used one-dimensional nuclear magnetic resonance (NMR) spectroscopy, two-dimensional NMR spectroscopy, infrared spectroscopy, and mass spectrometry to determine the structures of the resulting compounds. In this regard, we first tested the antimicrobial activity of these compounds against various bacteria, including Bacillus cereus, B. subtilis, Staphylococcus epidermidis, Staphylococcus aureus, Escherichia coli, Proteus mirabilis, and Pseudomonas aeruginosa, and against fungal pathogens, including Aspergillus fumigatus, Candida tropicalis, and Alternaria solani. Next, the precise mode for the interaction between synthesized aza-acyclic nucleosides and the target protein 8HQ5 was elucidate using molecular docking analysis. Subsequently, we tested the synthesized compounds for putative anticancer activity at different concentrations (i.e., 12.5, 25, 50, 100, and 200 µg/mL) against A549 cell (Human epithelial lung carcinoma) and human umbilical vein endothelial cell (HUVEC) lines. In addition, compounds antioxidant activity was evaluated using the 2,2-diphenyl-1-picrylhydrazyl-based and cupric reducing antioxidant capacity-based methods at different concentrations (i.e., 31.25, 62.5, 125, 250, and 500 µg/mL). Results revealed that both aza-acyclic nucleosides inhibited both bacterial and fungal strains, although toxicity toward bacterial strains was generally greater than toward fungal strains. We also observed that the molecular docking results were consistent with the results of in vitro antimicrobial assessments. Further, both aza-cyclic nucleosides exhibited cytotoxic effects against both the A549 cell and HUVEC lines. Despite exhibiting lower radical scavenging activity than ascorbic acid (an antioxidant compound used as a standard), Compound 1 from the novel synthetic aza-acyclic nucleosides showed a higher reduction capacity, which was dose-dependent. Overall, we report newly synthesized compounds that show promising antimicrobial, anticancer, and antioxidant effects. © 2025 Elsevier B.V., All rights reserved.Article Citation - Scopus: 73Pharmacological and Dietary-Supplement Treatments for Autism Spectrum Disorder: A Systematic Review and Network Meta-Analysis(BioMed Central Ltd, 2022) Siafis, Spyridon; Çiray, Oğulcan; Wu, Hui; Schneider-Thoma, Johannes; Bighelli, I.; Krause, Marc; Huhn, MaximilianBackground: There is still no approved medication for the core symptoms of autism spectrum disorder (ASD). This network meta-analysis investigated pharmacological and dietary-supplement treatments for ASD. Methods: We searched for randomized-controlled-trials (RCTs) with a minimum duration of seven days in ClinicalTrials.gov, EMBASE, MEDLINE, PsycINFO, WHO-ICTRP (from inception up to July 8, 2018), CENTRAL and PubMed (up to November 3, 2021). The co-primary outcomes were core symptoms (social-communication difficulties-SCD, repetitive behaviors-RB, overall core symptoms-OCS) measured by validated scales and standardized-mean-differences (SMDs). Associated symptoms, e.g., irritability/aggression and attention-deficit/hyperactivity disorder (ADHD) symptoms, dropouts and important side-effects, were investigated as secondary outcomes. Studies in children/adolescents and adults were analyzed separately in random-effects pairwise and network meta-analyses. Results: We analyzed data for 41 drugs and 17 dietary-supplements, from 125 RCTs (n = 7450 participants) in children/adolescents and 18 RCTs (n = 1104) in adults. The following medications could improve at least one core symptom domain in comparison with placebo: aripiprazole (k = 6 studies in analysis, SCD: SMD = 0.27 95% CI [0.09, 0.44], RB: 0.48 [0.26, 0.70]), atomoxetine (k = 3, RB:0.49 [0.18, 0.80]), bumetanide (k = 4, RB: 0.35 [0.09, 0.62], OCS: 0.61 [0.31, 0.91]), and risperidone (k = 4, SCM: 0.31 [0.06, 0.55], RB: 0.60 [0.29, 0.90]; k = 3, OCS: 1.18 [0.75, 1.61]) in children/adolescents; fluoxetine (k = 1, RB: 1.20 [0.45, 1.96]), fluvoxamine (k = 1, RB: 1.04 [0.27, 1.81]), oxytocin (k = 6, RB:0.41 [0.16, 0.66]) and risperidone (k = 1, RB: 0.97 [0.21,1.74]) in adults. There were some indications of improvement by carnosine, haloperidol, folinic acid, guanfacine, omega-3-fatty-acids, probiotics, sulforaphane, tideglusib and valproate, yet imprecise and not robust. Confidence in these estimates was very low or low, except moderate for oxytocin. Medications differed substantially in improving associated symptoms, and in their side-effect profiles. Limitations: Most of the studies were inadequately powered (sample sizes of 20–80 participants), with short duration (8–13 weeks), and about a third focused on associated symptoms. Networks were mainly star-shaped, and there were indications of reporting bias. There was no optimal rating scale measuring change in core symptoms. Conclusions: Some medications could improve core symptoms, although this could be likely secondary to the improvement of associated symptoms. Evidence on their efficacy and safety is preliminary; therefore, routine prescription of medications for the core symptoms cannot be recommended. Trial registration PROSPERO-ID CRD42019125317. © 2022 Elsevier B.V., All rights reserved.
