Mardin Meslek Yüksekokulu
Permanent URI for this communityhttps://hdl.handle.net/20.500.12514/28
Browse
Browsing Mardin Meslek Yüksekokulu by WoS Q "Q1"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Automatic Detection of Brain Tumors With the Aid of Ensemble Deep Learning Architectures and Class Activation Map Indicators by Employing Magnetic Resonance Images(Elsevier, 2024) Turk, Omer; Ozhan, Davut; Acar, Emrullah; Akinci, Tahir Cetin; Yilmaz, MusaToday, as in every life-threatening disease, early diagnosis of brain tumors plays a life-saving role. The brain tumor is formed by the transformation of brain cells from their normal structures into abnormal cell structures. These formed abnormal cells begin to form in masses in the brain regions. Nowadays, many different techniques are employed to detect these tumor masses, and the most common of these techniques is Magnetic Resonance Imaging (MRI). In this study, it is aimed to automatically detect brain tumors with the help of ensemble deep learning architectures (ResNet50, VGG19, InceptionV3 and MobileNet) and Class Activation Maps (CAMs) indicators by employing MRI images. The proposed system was implemented in three stages. In the first stage, it was determined whether there was a tumor in the MR images Tumor) were detected from MR images (Multi-class Approach). In the last stage, CAMs of each tumor group were created as an alternative tool to facilitate the work of specialists in tumor detection. The results showed that the overall accuracy of the binary approach was calculated as 100% on the ResNet50, InceptionV3 and MobileNet architectures, and 99.71% on the VGG19 architecture. Moreover, the accuracy values of 96.45% with ResNet50, 93.40% with VGG19, 85.03% with InceptionV3 and 89.34% with MobileNet architectures were obtained in the multi-class approach.Article Citation - WoS: 48Citation - Scopus: 85A comprehensive review on detection of cyber-attacks: Data sets, methods, challenges, and future research directions(ScienceDirect, 2022) Ahmetoglu, Huseyin; Das, ResulRapid developments in network technologies and the amount and scope of data transferred on networks are increasing day by day. Depending on this situation, the density and complexity of cyber threats and attacks are also expanding. The ever-increasing network density makes it difficult for cyber-security professionals to monitor every movement on the network. More frequent and complex cyber-attacks make the detection and identification of anomalies in network events more complex. Machine learning offers various tools and techniques for automating the detection of cyber attacks and for rapid prediction and analysis of attack types. This study discusses the approaches to machine learning methods used to detect attacks. We examined the detection, classification, clustering, and analysis of anomalies in network traffic. We gave the cyber-security focus, machine learning methods, and data sets used in each study we examined. We investigated which feature selection or dimension reduction method was applied to the data sets used in the studies. We presented in detail the types of classification carried out in these studies, which methods were compared with other methods, the performance metrics used, and the results obtained in tables. We examined the data sets of network attacks presented as open access. We suggested a basic taxonomy for cyber attacks. Finally, we discussed the difficulties encountered in machine learning applications used in network attacks and their solutions.
