MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Classification of Epileptic and Healthy Individual Eeg Signals Using Neural Networks

dc.authorid AYKAT, Sukru/0000-0003-1738-3696
dc.authorscopusid 57214818735
dc.authorscopusid 8268513100
dc.authorscopusid 9744137200
dc.authorwosid Ensari, Tolga/D-3799-2019
dc.authorwosid Senan, Sibel/C-6665-2019
dc.authorwosid AYKAT, Şükrü/IZF-0285-2023
dc.contributor.author Aykat, Sukru
dc.contributor.author Senan, Sibel
dc.contributor.author Ensari, Tolga
dc.contributor.author Aykat, Şükrü
dc.contributor.other Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü
dc.date.accessioned 2025-02-15T19:35:17Z
dc.date.available 2025-02-15T19:35:17Z
dc.date.issued 2020
dc.department Artuklu University en_US
dc.department-temp [Aykat, Sukru] Mardin Artuklu Univ, Midyat Meslek Yuksekokulu, Bilgisayar Programciligi, Mardin, Turkey; [Senan, Sibel; Ensari, Tolga] Istanbul Univ Cerrahpasa, Muhendislik Fak, Bilgisayar Muhendisligi, Istanbul, Turkey en_US
dc.description AYKAT, Sukru/0000-0003-1738-3696 en_US
dc.description.abstract Electroencephalogram (EEG) are signals used for the analysis of the electrical and functional activity of the brain. These signals are commonly used to detect epileptic seizures. The aim of this study is to classify healthy and epileptic individual EEG signals using artificial neural networks (ANN). For this purpose, the open data source of the University of Bonn was used. The success rates of the classification results obtained with the designed ANN model show the effectiveness of this ANN structure in the application under consideration. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/ubmk50275.2020.9219474
dc.identifier.endpage 51 en_US
dc.identifier.isbn 9781728175652
dc.identifier.scopus 2-s2.0-85095709922
dc.identifier.scopusquality N/A
dc.identifier.startpage 47 en_US
dc.identifier.uri https://doi.org/10.1109/ubmk50275.2020.9219474
dc.identifier.uri https://hdl.handle.net/20.500.12514/6009
dc.identifier.wos WOS:000629055500009
dc.identifier.wosquality N/A
dc.language.iso tr en_US
dc.publisher Ieee en_US
dc.relation.ispartof 5th International Conference on Computer Science and Engineering (UBMK) -- SEP 09-11, 2020 -- Diyarbakir, TURKEY en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Eeg Signal en_US
dc.subject Artificial Neural Networks en_US
dc.subject Wavelet Transform en_US
dc.title Classification of Epileptic and Healthy Individual Eeg Signals Using Neural Networks en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication a8323742-ae00-482c-a0b2-850db60f4ea8
relation.isAuthorOfPublication.latestForDiscovery a8323742-ae00-482c-a0b2-850db60f4ea8
relation.isOrgUnitOfPublication b066d763-f8ba-4882-9633-93fcf87fae5a
relation.isOrgUnitOfPublication.latestForDiscovery b066d763-f8ba-4882-9633-93fcf87fae5a

Files