MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A hybrid approach consisting of 3D depthwise separable convolution and depthwise squeeze‑and‑excitation network for hyperspectral image classifcation

dc.authorid 0000-0003-4585-4168
dc.authorid 0000-0002-2702-8877
dc.authorid Gungor, Mustafa/0000-0002-2702-8877
dc.authorscopusid 57128064200
dc.authorscopusid 59228533500
dc.authorwosid Gungor, Mustafa/Jpl-0599-2023
dc.contributor.author Asker, Mehmet Emin
dc.contributor.author Güngör, Mustafa
dc.contributor.author Gungor, Mustafa
dc.contributor.other Department of Electricity / Elektrik Bölümü
dc.date.accessioned 2024-09-13T22:43:44Z
dc.date.available 2024-09-13T22:43:44Z
dc.date.issued 2024
dc.department Artuklu University en_US
dc.department-temp [Asker, Mehmet Emin] Dicle Univ, Vocat Sch Tech Sci, Dept Elect & Energy, Diyarbakir, Turkiye; [Gungor, Mustafa] Mardin Artuklu Univ, Vocat Sch Midyat, Dept Elect & Energy, TR-47200 Mardin, Turkiye en_US
dc.description Asker, Mehmet Emin/0000-0003-4585-4168; Gungor, Mustafa/0000-0002-2702-8877 en_US
dc.description.abstract Hyperspectral image classification is crucial for a wide range of applications, including environmental monitoring, precision agriculture, and mining, due to its ability to capture detailed spectral information across numerous wavelengths. However, the high dimensionality and complex spatial-spectral relationships in hyperspectral data pose significant challenges. Deep learning, particularly Convolutional Neural Networks (CNNs), has shown remarkable success in automatically extracting relevant features from high-dimensional data, making them well-suited for handling the intricate spatial-spectral relationships in hyperspectral images.This study presents a hybrid approach for hyperspectral image classification, combining 3D Depthwise Separable Convolution (3D DSC) and Depthwise Squeeze-and-Excitation Network (DSENet). The 3D DSC efficiently captures spatial-spectral features, reducing computational complexity while preserving essential information. The DSENet further refines these features by applying channel-wise attention, enhancing the model's ability to focus on the most informative features. To assess the performance of the proposed hybrid model, extensive experimental studies were carried out on four commonly utilized HSI datasets, namely HyRANK-Loukia and WHU-Hi (including HongHu, HanChuan, and LongKou). As a result of the experimental studies, the HyRANK-Loukia achieved an accuracy of 90.9%, marking an 8.86% increase compared to its previous highest accuracy. Similarly, for the WHU-Hi datasets, HongHu achieved an accuracy of 97.49%, reflecting a 2.11% improvement over its previous highest accuracy; HanChuan achieved an accuracy of 97.49%, showing a 2.4% improvement; and LongKou achieved an accuracy of 99.79%, providing a 0.15% improvement compared to its previous highest accuracy. Comparative analysis highlights the superiority of the proposed model, emphasizing improved classification accuracy with lower computational costs. en_US
dc.description.citation Asker, M.E., Güngör, M. A hybrid approach consisting of 3D depthwise separable convolution and depthwise squeeze-and-excitation network for hyperspectral image classification. Earth Sci Inform (2024). https://doi.org/10.1007/s12145-024-01469-2 en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s12145-024-01469-2
dc.identifier.endpage 5821 en_US
dc.identifier.issn 1865-0473
dc.identifier.issn 1865-0481
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85203706804
dc.identifier.scopusquality Q2
dc.identifier.startpage 5795 en_US
dc.identifier.uri https://doi.org/10.1007/s12145-024-01469-2
dc.identifier.volume 17 en_US
dc.identifier.wos WOS:001310620500001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject Depthwise Separable Convolution en_US
dc.subject Hyperspectral Images Classification en_US
dc.subject Cnn en_US
dc.subject Deep Learning en_US
dc.subject Squeeze And Excitation Network en_US
dc.title A hybrid approach consisting of 3D depthwise separable convolution and depthwise squeeze‑and‑excitation network for hyperspectral image classifcation
dc.title A Hybrid Approach Consisting of 3d Depthwise Separable Convolution and Depthwise Squeeze-And Network for Hyperspectral Image Classification en_US
dc.type Article en_US
dc.wos.citedbyCount 1
dspace.entity.type Publication
relation.isAuthorOfPublication b9dc06bb-f287-4695-8c98-979be2ea0406
relation.isAuthorOfPublication.latestForDiscovery b9dc06bb-f287-4695-8c98-979be2ea0406
relation.isOrgUnitOfPublication 4cccae3d-4a72-4efa-a144-a6878ef8b337
relation.isOrgUnitOfPublication.latestForDiscovery 4cccae3d-4a72-4efa-a144-a6878ef8b337

Files

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.15 KB
Format:
Item-specific license agreed upon to submission
Description: