MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Classification of Eeg Signals Using Hilbert-Huang Transform-Based Deep Neural Networks

dc.authoridZan, Hasan/0000-0002-8156-016X
dc.authorwosidZan, Hasan/Aaf-2775-2019
dc.authorwosidYildiz, Abdulnasir/Izq-2323-2023
dc.authorwosidOzerdem, Mehmet Sirac/Aax-1187-2021
dc.contributor.authorZan, Hasan
dc.contributor.authorYildiz, Abdulnasir
dc.contributor.authorOzerdem, Mehmet Sirac
dc.contributor.authorZan, Hasan
dc.date.accessioned2025-02-15T19:38:18Z
dc.date.available2025-02-15T19:38:18Z
dc.date.issued2019
dc.departmentArtuklu Universityen_US
dc.department-temp[Zan, Hasan] Mardin Artuklu Univ, Meslek Yuksekokulu Mardin, Mardin, Turkey; [Yildiz, Abdulnasir; Ozerdem, Mehmet Sirac] Dicle Univ, Elekt Elekt Muh Bolumu, Diyarbakir, Turkeyen_US
dc.description.abstractEpilepsy is one of the most common neurologic disease. Electroencephalogram (EEG) contains physiologic and pathological information related human nervous system. EEG signals used in this study are obtained from Bonn University, Department of Epileptology EEG database. Original database has five subsets (A, B, C, D, E). Data have been reorganized into three groups which are healthy (AB), interictal (CD) and ictal EEG signals. Furthermore, in order to examine effect of signal length on classification performance, three different lengths are used. Hilbert-Huang transform is applied to the signals and they are represented as image files. Then, generated images are fed into deep neural networks with five different structures for classification. Accuracy is calculated for all cases to asses performance of proposed method. it is clear that successful results could be obtained using Hilbert-Huang transform along with deep learning networks.en_US
dc.description.provenanceSubmitted by GCRIS Admin (gcris@artuklu.edu.tr) on 2025-02-15T19:38:18Z No. of bitstreams: 0en
dc.description.provenanceMade available in DSpace on 2025-02-15T19:38:18Z (GMT). No. of bitstreams: 0 Previous issue date: 2019en
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citationcount1
dc.identifier.doi10.1109/UBMK.2019.8907043
dc.identifier.endpage289en_US
dc.identifier.isbn9781728139647
dc.identifier.scopus2-s2.0-85076216208
dc.identifier.scopusqualityN/A
dc.identifier.startpage285en_US
dc.identifier.urihttps://doi.org/10.1109/UBMK.2019.8907043
dc.identifier.wosWOS:000609879900054
dc.identifier.wosqualityN/A
dc.language.isotren_US
dc.publisherIEEEen_US
dc.relation.ispartof4th International Conference on Computer Science and Engineering (UBMK) -- SEP 11-15, 2019 -- Samsun, TURKEYen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHilbert-Haung Transformen_US
dc.subjectEegen_US
dc.subjectEpilepsyen_US
dc.subjectDeep Learningen_US
dc.subjectClassificationen_US
dc.titleClassification of Eeg Signals Using Hilbert-Huang Transform-Based Deep Neural Networksen_US
dc.title.alternativeEEG Verilerinin Hilbert-Huang Dönüşümü Tabanlı Derin Öğrenme Ağları ile Sınıflandırılmasıen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb6be3e7d-3260-4abd-bb65-c5dae94c0182
relation.isAuthorOfPublication.latestForDiscoveryb6be3e7d-3260-4abd-bb65-c5dae94c0182

Files