Alzheimer’s Classification with a MaxViT-Based Deep Learning Model Using Magnetic Resonance Imaging

dc.contributor.author Demirtaş Alpsalaz, S.
dc.contributor.author Aslan, E.
dc.contributor.author Özüpak, Y.
dc.contributor.author Alpsalaz, F.
dc.contributor.author Uzel, H.
dc.date.accessioned 2025-11-15T15:17:05Z
dc.date.available 2025-11-15T15:17:05Z
dc.date.issued 2025
dc.description.abstract Alzheimer’s disease (AD), a progressive neurodegenerative disorder, poses significant challenges for early diagnosis due to subtle symptom onset and overlap with normal aging. This study aims to develop an effective deep learning model for classifying four AD stages (Non-Demented, Very Mild Demented, Mild Demented, Moderate Demented) using brain MRI scans. We propose a Multi-Axis Vision Transformer (MaxViT)-based framework, leveraging transfer learning and robust data augmentation on the Kaggle Alzheimer’s MRI Dataset to address class imbalance and enhance generalization. The model employs MaxViT’s multi-axis attention mechanisms to capture both local and global patterns in MRI images. Our approach achieved a classification accuracy of 99.60%, with precision of 99.0%, recall of 98.1%, and F1-score of 98.51%. These results highlight MaxViT’s superior ability to differentiate AD stages, particularly in distinguishing challenging early stages. The proposed model offers a reliable tool for early AD diagnosis, laying a strong foundation for future clinical applications and interdisciplinary research in neurodegenerative disease detection. Future work should explore larger, more diverse datasets and additional biomarkers to further validate and enhance model performance. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.38094/jastt62453
dc.identifier.issn 2708-0757
dc.identifier.scopus 2-s2.0-105018586435
dc.identifier.uri https://doi.org/10.38094/jastt62453
dc.identifier.uri https://hdl.handle.net/20.500.12514/9945
dc.language.iso en en_US
dc.publisher Interdisciplinary Publishing Academia en_US
dc.relation.ispartof Journal of Applied Science and Technology Trends en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Alzheimer en_US
dc.subject Classification en_US
dc.subject Deep Learning en_US
dc.subject MaxViT en_US
dc.subject MRI en_US
dc.subject Transfer Learning en_US
dc.title Alzheimer’s Classification with a MaxViT-Based Deep Learning Model Using Magnetic Resonance Imaging en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 60138333100
gdc.author.scopusid 58083655800
gdc.author.scopusid 57200142934
gdc.author.scopusid 59221704100
gdc.author.scopusid 58826043600
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Demirtaş Alpsalaz] Süheyla, T.C. Sağlık Bakanlığı,, Ankara, Turkey; [Aslan] Emrah, Faculty of Engineering and Architecture, Mardin Artuklu University, Mardin, Turkey; [Özüpak] Yıldırım, Dicle Üniversitesi, Diyarbakir, Turkey; [Alpsalaz] Feyyaz, Bozok Üniversitesi, Yozgat, Turkey; [Uzel] Hasan, Bozok Üniversitesi, Yozgat, Turkey en_US
gdc.description.endpage 327 en_US
gdc.description.issue 2 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 316 en_US
gdc.description.volume 6 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4414795842
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.59
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0

Files