MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Learning-Based Approaches for Voltage Regulation and Control in DC Microgrids with CPL

dc.authorid0000-0002-2702-8877
dc.authorwosidJPL-0599-2023
dc.contributor.authorGüngör, Mustafa
dc.contributor.authorAsker, Mehmet Emin
dc.date.accessioned2023-12-14T11:58:30Z
dc.date.available2023-12-14T11:58:30Z
dc.date.issued2023
dc.departmentMAÜ, Meslek Yüksekokulları, Midyat Meslek Yüksekokulu, Elektrik Bölümüen_US
dc.description.abstractThis article introduces a novel approach to voltage regulation in a DC/DC boost converter. The approach leverages two advanced control techniques, including learning-based nonlinear control. By combining the backstepping (BSC) algorithm with artificial neural network (ANN)-based control techniques, the proposed approach aims to achieve accurate voltage tracking. This is accomplished by employing the nonlinear distortion observer (NDO) technique, which enables a fast dynamic response through load power estimation. The process involves training a neural network using data from the BSC controller. The trained network is subsequently utilized in the voltage regulation controller. Extensive simulations are conducted to evaluate the performance of the proposed control strategy, and the results are compared to those obtained using conventional BSC and model predictive control (MPC) controllers. The simulation results clearly demonstrate the effectiveness and superiority of the suggested control strategy over BSC and MPC.en_US
dc.description.citationGüngör M, Asker ME. Learning-Based Approaches for Voltage Regulation and Control in DC Microgrids with CPL. Sustainability. 2023; 15(21):15501. https://doi.org/10.3390/su152115501en_US
dc.identifier.doi10.3390/su152115501
dc.identifier.issue15501en_US
dc.identifier.urihttps://doi.org/10.3390/su152115501
dc.identifier.urihttps://hdl.handle.net/20.500.12514/4700
dc.identifier.volume15en_US
dc.identifier.wos1100368300001
dc.identifier.wosqualityQ2
dc.institutionauthorGüngör, Mustafa
dc.institutionauthorAsker, Mehmet Emin
dc.language.isoenen_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.ispartofSustainabilityen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectANNen_US
dc.subjectpower estimationen_US
dc.subjectBSCen_US
dc.subjectvoltage regulationen_US
dc.subjectmodel predictive controlen_US
dc.titleLearning-Based Approaches for Voltage Regulation and Control in DC Microgrids with CPLen_US
dc.title.alternativeCPL ile DC Mikro Şebekelerde Gerilim Regülasyonu ve Kontrolü için Öğrenmeye Dayalı Yaklaşımlaren_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb9dc06bb-f287-4695-8c98-979be2ea0406
relation.isAuthorOfPublication.latestForDiscoveryb9dc06bb-f287-4695-8c98-979be2ea0406

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sustainability-15-15501.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format
Description:
tam metin/full tex

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: