MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Learning-Based Approaches for Voltage Regulation and Control in Dc Microgrids With Cpl

dc.authorid 0000-0002-2702-8877
dc.authorid Gungor, Mustafa/0000-0002-2702-8877
dc.authorscopusid 59228533500
dc.authorscopusid 57128064200
dc.authorwosid Gungor, Mustafa/Jpl-0599-2023
dc.contributor.author Gungor, Mustafa
dc.contributor.author Güngör, Mustafa
dc.contributor.author Asker, Mehmet Emin
dc.contributor.other Department of Electricity / Elektrik Bölümü
dc.date.accessioned 2023-12-14T11:58:30Z
dc.date.available 2023-12-14T11:58:30Z
dc.date.issued 2023
dc.department Artuklu University en_US
dc.department-temp [Gungor, Mustafa] Mardin Artuklu Univ, Vocat Sch Midyat, Dept Elect & Energy, TR-47200 Mardin, Turkiye; [Asker, Mehmet Emin] Dicle Univ, Vocat Sch Tech Sci, Dept Elect & Energy, TR-21280 Diyarbakir, Turkiye en_US
dc.description Gungor, Mustafa/0000-0002-2702-8877 en_US
dc.description.abstract This article introduces a novel approach to voltage regulation in a DC/DC boost converter. The approach leverages two advanced control techniques, including learning-based nonlinear control. By combining the backstepping (BSC) algorithm with artificial neural network (ANN)-based control techniques, the proposed approach aims to achieve accurate voltage tracking. This is accomplished by employing the nonlinear distortion observer (NDO) technique, which enables a fast dynamic response through load power estimation. The process involves training a neural network using data from the BSC controller. The trained network is subsequently utilized in the voltage regulation controller. Extensive simulations are conducted to evaluate the performance of the proposed control strategy, and the results are compared to those obtained using conventional BSC and model predictive control (MPC) controllers. The simulation results clearly demonstrate the effectiveness and superiority of the suggested control strategy over BSC and MPC. en_US
dc.description.citation Güngör M, Asker ME. Learning-Based Approaches for Voltage Regulation and Control in DC Microgrids with CPL. Sustainability. 2023; 15(21):15501. https://doi.org/10.3390/su152115501 en_US
dc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
dc.identifier.doi 10.3390/su152115501
dc.identifier.issn 2071-1050
dc.identifier.issue 21 en_US
dc.identifier.scopus 2-s2.0-85199234266
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.3390/su152115501
dc.identifier.volume 15 en_US
dc.identifier.wos WOS:001100368300001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Ann en_US
dc.subject Power Estimation en_US
dc.subject Bsc en_US
dc.subject Voltage Regulation en_US
dc.subject Model Predictive Control en_US
dc.title Learning-Based Approaches for Voltage Regulation and Control in Dc Microgrids With Cpl en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication b9dc06bb-f287-4695-8c98-979be2ea0406
relation.isAuthorOfPublication.latestForDiscovery b9dc06bb-f287-4695-8c98-979be2ea0406
relation.isOrgUnitOfPublication 4cccae3d-4a72-4efa-a144-a6878ef8b337
relation.isOrgUnitOfPublication.latestForDiscovery 4cccae3d-4a72-4efa-a144-a6878ef8b337

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sustainability-15-15501.pdf
Size:
1.13 MB
Format:
Adobe Portable Document Format
Description:
tam metin/full tex

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: