Yapay Sinir Ağları, Destek Vektör Makineleri ve Box-Jenkins Yöntemleriyle Kentsel İçmesuyu Talebi Tahmini ve Karşılaştırmalı Analizi

Loading...
Thumbnail Image

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

Su talep tahminleri, yatırım planlamalarının yapılmasında, su sistemlerinin tasarımında (arıtma tesisi, depolama, iletim ve dağıtım hatları), mevcut sistemlerin optimal kapasitede işletilmesinde, işletme ve yatırım maliyetlerinin hesaplanması ve kentsel su yönetimi politikalarının (fiyatlandırma politikası, su tasarrufu vb.) belirlenmesi gibi birçok alanda kullanılmaktadır. Bu nedenle gerçeğe yakın bir su talep tahmininin, su sistemlerinin planlanması, tasarımı, işletimi ve yönetiminde anahtar niteliğinde olduğu söylenebilir. Bu çalışmada, Diyarbakır kent merkezi içme suyu talebinin Yapay Sinir Ağları ve zaman serisi analizine dayalı yöntemlerden Winters'in Mevsimsel Üstel Düzeltme ve Box-Jenkins ile tahmin edilmesi ve elde edilen tahminlerin karşılaştırılması amaçlanmıştır. Bu amaçla, öncelikle Diyarbakır kent merkezi su talebini etkileyen değişkenlerle ilgili 2003-2013 yıllarına ait aylık veriler toplanarak analiz edilmiştir. Ardından, bu verilere göre Yapay Sinir Ağları, Winters'in Mevsimsel Üstel Düzeltme ve Box-Jenkins yöntemleriyle içme suyu talep tahmini yapılmıştır. Üç yöntemden elde edilen tahminler, Verimlilik, Ortalama Hata Kareleri, Ortalama Hata Kareleri Kökü, Ortalama Mutlak Yüzde Hata ölçütlerine göre karşılaştırılmıştır. Karşılaştırma sonucunda, Yapay Sinir Ağları'nın tüm performans ölçütlerinde zaman serisi analizine dayalı yöntemlerinden daha iyi tahmin sonuçlarına sahip olduğu görülmüştür.
Water demand forecasting is currently being used in many fields such as the investment planning, the design of the water systems (treatment plants, storage, transmission and distribution lines), the operation of existing systems at optimal capacity, calculation of operation and investment costs, and determination of urban water management policies (pricing policy, water conservation, etc.). Therefore, it can be said that an accurate water demand forecast has a key role in the planning, design, operation, and management of water systems. In this study, it is aimed to forecast Diyarbakir city centre drinking water demand by using Artificial Neural Networks method and Winters's Seasonal Exponential Smoothing and Box-Jenkins methods based on time series analysis, and to compare forecasts obtained. For this purpose, firstly the data related to the variables affecting the water demand of Diyarbakir city centre for the time interval of 2003 - 2013 has been collected and analyzed. Then, a drinking water demand forecast has been made on the basis of this data by using Artificial Neural Network, Winters's Seasonal Exponential Smoothing, and BoxJenkins methods. The forecasts obtained from these three methods have been compared according to Productivity, The Mean Square Error, The Root Mean Square Error and The Mean Absolute Percentage Error criteria. In comparison results, it was seen that, in all performance criteria, Artificial Neural Networks method has better forecast results than those methods based on time series analysis.

Description

Keywords

Sosyal Bilimler Tarihi

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

İşletme ve Ekonomi Araştırmaları Dergisi

Volume

7

Issue

1

Start Page

123

End Page

138
Page Views

3

checked on Dec 15, 2025

Downloads

101

checked on Dec 15, 2025

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

6

CLEAN WATER AND SANITATION
CLEAN WATER AND SANITATION Logo

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

8

DECENT WORK AND ECONOMIC GROWTH
DECENT WORK AND ECONOMIC GROWTH Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

11

SUSTAINABLE CITIES AND COMMUNITIES
SUSTAINABLE CITIES AND COMMUNITIES Logo

14

LIFE BELOW WATER
LIFE BELOW WATER Logo