MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Attention Enhanced Inceptionnext-Based Hybrid Deep Learning Model for Lung Cancer Detection

dc.authoridAslan, Emrah/0000-0002-0181-3658
dc.authoridPacal, Ishak/0000-0001-6670-2169
dc.authorwosidAslan, Emrah/Hpg-5766-2023
dc.authorwosidPacal, Ishak/Hjj-1662-2023
dc.contributor.authorAslan, Emrah
dc.contributor.authorAslan, Emrah
dc.contributor.authorPacal, Ishak
dc.date.accessioned2025-03-15T19:50:02Z
dc.date.available2025-03-15T19:50:02Z
dc.date.issued2025
dc.departmentArtuklu Universityen_US
dc.department-temp[Ozdemir, Burhanettin] Alfaisal Univ, Coll Business, Dept Operat & Project Management, Riyadh 11533, Saudi Arabia; [Aslan, Emrah] Mardin Artuklu Univ, Fac Engn & Architecture, Dept Comp Engn, TR-47000 Mardin, Turkiye; [Pacal, Ishak] Igdir Univ, Fac Engn, Dept Comp Engn, TR-76000 Igdir, Turkiye; [Pacal, Ishak] Nakhchivan State Univ, Fac Architecture & Engn, Dept Elect & Informat Technol, Nakhchivan AZ7012, Azerbaijanen_US
dc.descriptionAslan, Emrah/0000-0002-0181-3658; Pacal, Ishak/0000-0001-6670-2169en_US
dc.description.abstractLung cancer is the most common cause of cancer-related mortality globally. Early diagnosis of this highly fatal and prevalent disease can significantly improve survival rates and prevent its progression. Computed tomography (CT) is the gold standard imaging modality for lung cancer diagnosis, offering critical insights into the assessment of lung nodules. We present a hybrid deep learning model that integrates Convolutional Neural Networks (CNNs) with Vision Transformers (ViTs). By optimizing and integrating grid and block attention mechanisms with InceptionNeXt blocks, the proposed model effectively captures both fine-grained and large-scale features in CT images. This comprehensive approach enables the model not only to differentiate between malignant and benign nodules but also to identify specific cancer subtypes such as adenocarcinoma, large cell carcinoma, and squamous cell carcinoma. The use of InceptionNeXt blocks facilitates multi-scale feature processing, making the model particularly effective for complex and diverse lung nodule patterns. Similarly, including grid attention improves the model's capacity to identify spatial relationships across different sections of the picture, whereas block attention focuses on capturing hierarchical and contextual information, allowing for precise identification and categorization of lung nodules. To ensure robustness and generalizability, the model was trained and validated using two public datasets, Chest CT and IQ-OTH/NCCD, employing transfer learning and pre-processing techniques to improve detection accuracy. The proposed model achieved an impressive accuracy of 99.54% on the IQ-OTH/NCCD dataset and 98.41% on the Chest CT dataset, outperforming state-of-the-art CNN-based and ViT-based methods. With only 18.1 million parameters, the model provides a lightweight yet powerful solution for early lung cancer detection, potentially improving clinical outcomes and increasing patient survival rates.en_US
dc.description.sponsorshipAlfaisal Universityen_US
dc.description.sponsorshipThis work was funded by Alfaisal University, which funds research initiatives aimed at advancing knowledge and innovation in alignmentwith its commitment to academic excellence.en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.doi10.1109/ACCESS.2025.3539122
dc.identifier.endpage27069en_US
dc.identifier.issn2169-3536
dc.identifier.scopus2-s2.0-85217672297
dc.identifier.scopusqualityQ1
dc.identifier.startpage27050en_US
dc.identifier.urihttps://doi.org/10.1109/ACCESS.2025.3539122
dc.identifier.volume13en_US
dc.identifier.wosWOS:001422034400001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherIEEE-Inst Electrical Electronics Engineers incen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLung Canceren_US
dc.subjectCanceren_US
dc.subjectAccuracyen_US
dc.subjectComputed Tomographyen_US
dc.subjectLungsen_US
dc.subjectFeature Extractionen_US
dc.subjectSolid Modelingen_US
dc.subjectMedical Diagnostic Imagingen_US
dc.subjectComputational Modelingen_US
dc.subjectImagingen_US
dc.subjectCnnen_US
dc.subjectDeep Learningen_US
dc.subjectLung Canceren_US
dc.subjectViten_US
dc.titleAttention Enhanced Inceptionnext-Based Hybrid Deep Learning Model for Lung Cancer Detectionen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isAuthorOfPublication.latestForDiscoveryea96819c-4e93-4dc4-a97c-2ca74bd3f34d

Files