Brain Tumor Detection From Brain Mri Images With Deep Learning Methods;
dc.contributor.author | Aykat, S. | |
dc.contributor.author | Aykat, Şükrü | |
dc.contributor.other | 08.01. Department of Computer Engineering / Bilgisayar Mühendisliği Bölümü | |
dc.contributor.other | 08. Faculty of Engineering and Architecture / Mühendislik Mimarlık Fakültesi | |
dc.contributor.other | 01. Mardin Artuklu University / Mardin Artuklu Üniversitesi | |
dc.date.accessioned | 2025-02-15T19:39:12Z | |
dc.date.available | 2025-02-15T19:39:12Z | |
dc.date.issued | 2024 | |
dc.description.abstract | In this research, a deep learning model is proposed for brain tumor detection using brain MRI image collection. Three pre-trained convolutional neural networks are used as feature extractors. The obtained features are classified as brain tumors, normal, and tumorous using four different classifiers. Our proposed model has achieved a remarkable accuracy of 99.58% in its analysis, which is better than standard techniques. In addition, the proposed method has shown better performance than the convolutional neural network models used in the analysis. © 2024 IEEE. | en_US |
dc.identifier.citationcount | 0 | |
dc.identifier.doi | 10.1109/IDAP64064.2024.10710648 | |
dc.identifier.isbn | 9798331531492 | |
dc.identifier.scopus | 2-s2.0-85207953519 | |
dc.identifier.uri | https://doi.org/10.1109/IDAP64064.2024.10710648 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12514/6287 | |
dc.language.iso | tr | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 8th International Artificial Intelligence and Data Processing Symposium, IDAP 2024 -- 8th International Artificial Intelligence and Data Processing Symposium, IDAP 2024 -- 21 September 2024 through 22 September 2024 -- Malatya -- 203423 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Brain Mri | en_US |
dc.subject | Brain Tumor | en_US |
dc.subject | Deep Learning | en_US |
dc.title | Brain Tumor Detection From Brain Mri Images With Deep Learning Methods; | en_US |
dc.title.alternative | derin Grenme Y Ntemleri Ile Beyin Mr G R Nt Lerinden Beyin T M R Tespiti | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
gdc.author.institutional | Aykat, S. | |
gdc.author.scopusid | 57214818735 | |
gdc.coar.access | metadata only access | |
gdc.coar.type | text::conference output | |
gdc.description.department | Artuklu University | en_US |
gdc.description.departmenttemp | Aykat S., Mardin Artuklu Üniversitesi, Mühendislik Mimarlik Fakültesi Bilgisayar Mühendisliǧi, Mardin, Turkey | en_US |
gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
gdc.description.scopusquality | N/A | |
gdc.description.wosquality | N/A | |
gdc.openalex.fwci | 0.501 | |
gdc.scopus.citedcount | 1 | |
relation.isAuthorOfPublication | a8323742-ae00-482c-a0b2-850db60f4ea8 | |
relation.isAuthorOfPublication.latestForDiscovery | a8323742-ae00-482c-a0b2-850db60f4ea8 | |
relation.isOrgUnitOfPublication | b066d763-f8ba-4882-9633-93fcf87fae5a | |
relation.isOrgUnitOfPublication | b4a7a54e-df38-44d5-9f03-ab3ce38ad8a8 | |
relation.isOrgUnitOfPublication | 39ccb12e-5b2b-4b51-b989-14849cf90cae | |
relation.isOrgUnitOfPublication.latestForDiscovery | b066d763-f8ba-4882-9633-93fcf87fae5a |