MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Epileptik EEG Sinyallerinin Sınıflandırılması için Bir Boyutlu Medyan Yerel İkili Örüntü Temelli Öznitelik Çıkarımı

Loading...
Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Elektroansefalogram (EEG), epilepsi tespitinde yaygın olarak kullanılan önemli bir veri kaynağıdır. Bu çalışmada da Bonn Üniversitesi Epileptoloji bölümü veritabanından alınan ve A, B, C, D, E olmak üzere 5 işaret grubundan oluşan EEG kayıtları kullanılmıştır. Bir boyutklu medyan yerel ikili örüntü (1B-MYİÖ) yöntemi uygulanarak elde edilen özniteliklerin k-En Yakın Komşu (k-NN) sınıflandırıcısı ile sınıflandırılması amaçlanmıştır. Çalışmada geliştirilen 1BMYİÖ yönteminin öznitelik olarak sınıflandırma başarısı değerlendirilmiştir. Bu sınıflandırma için karışıklık matrisi hesaplanarak model başarım ölçümü yapılmıştır. Çalışmada A-E veri setleri için sınıflandırma performansı %100, A-D veri setleri için %99.00, D-E veri setleri için %98.00, E-CD veri setleri için %99.50 ve A-D-E veri setleri için de %96.00 olarak bulunmuştur. Çalışmada kullanılan 1B-MYİÖ yönteminin, literatürde kullanılan birçok yöntemden daha iyi sonuç verdiği görülmüştür.
Electroencephalogram is an important data source that widely used in detecting epilepsy. In this study, EEG records consisting of five markers A, B, C, D, E that obtained from the database of Epilogy of Bonn University Epileptology Department was used. The feature vectors that obtained by applying the one dimension median local binary pattern (1D-MLBP) method were classified by using k nearest neighbor (kNN) algorithm The classification performance related to 1D-MLBP method developed was evaluated as an attribute. For this classification, the performance criteria was evaluated by calculating the confusion matrix. In this study,the classification performance for the A-E data sets was found to be 100.0%, 99.00% for the A-D data sets, 98.00% for the D-E data sets, 99.50% for the E-CD data sets and 96.00% for the A-D-E data sets. It has been seen that 1D-MLBP method used in the study gives better results than many methods used in the literature.

Description

Keywords

Mühendislik, Ortak Disiplinler

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Scopus Q

Source

Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji

Volume

5

Issue

3

Start Page

97

End Page

107