MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Using Machine Learning To Detect Different Eye Diseases From Oct Images

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Prof.Dr. İskender AKKURT

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Events

Abstract

Diseases or damage to the retina that cause adverse effects are one of the most common reasons people lose their sight at an early age. Today, machine learning techniques, which give high accuracy results in a short time, have been used for disease detection in the biomedical field. Optical coherence tomography is an advanced tool for the analysis, detection and treatment of retinal diseases by imaging the retinal layers. The aim of this study is to detect eight retinal diseases that can occur in the eye and cause permanent damage as a result, using machine learning from eye tomography images. For this purpose, hyperparameter settings were applied to six deep learning models, training was performed on the OCT-C8 dataset and performance analyzes were made. The performance of these hyperparameter-tuned models was also compared with previous eye disease detection studies in the literature, and it was seen that the classification success of the hyperparameter-tuned DenseNet121 model presented in this study was higher than the success of the other models discussed. The fine-tuned DenseNet121 classifier achieved 97.79% accuracy, 97.69% sensitivity, and 97.79% precision for the OCT-C8 dataset. © IJCESEN.

Description

Keywords

Deep Learning, Densenet, Machine Learning, Optical Coherence Tomography (Oct), Retinal Disease

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

N/A

Scopus Q

Q4

Source

International Journal of Computational and Experimental Science and Engineering

Volume

9

Issue

2

Start Page

62

End Page

67