Advanced Fault Classification in Induction Motors for Electric Vehicles Using a Stacking Ensemble Learning Approach

dc.contributor.author Benkaihoul, Said
dc.contributor.author Khadar, Saad
dc.contributor.author Ozupak, Yildirim
dc.contributor.author Aslan, Emrah
dc.contributor.author Almalki, Mishari Metab
dc.contributor.author Mossa, Mahmoud A.
dc.date.accessioned 2025-12-15T15:46:49Z
dc.date.available 2025-12-15T15:46:49Z
dc.date.issued 2025
dc.description.abstract This study proposes an innovative stacking ensemble learning framework for classifying faults in induction motors utilized in Electric Vehicles (EVs). Employing a comprehensive dataset comprising motor data, such as speed, torque, current, and voltage, the analysis encompasses six distinct conditions: normal operating mode, over-voltage fault, under-voltage fault, overloading fault, phase-to-phase fault, and phase-to-ground fault. The proposed model integrates Gradient Boosting (GB), K-Nearest Neighbors (KNN), Gradient Boosting (XGBoost), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF) algorithms in a synergistic manner. The findings reveal that the RF-GB-DT-XGBoost combination achieves a remarkable accuracy of 98.53%, significantly surpassing other methods reported in the literature. Performance is evaluated through metrics including accuracy, precision, sensitivity, and F1-score, with results analyzed in comparison to practical applications and existing studies. Validated with real-world data, this study demonstrates that the proposed model offers a groundbreaking solution for predictive maintenance systems in the EV industry, exhibiting high generalization capacity despite complex operating conditions. This approach holds transformative potential for both academic research and industrial applications. The dataset used in this study was generated using a MATLAB 2018/Simulink-based Variable Frequency Drive (VFD) model that emulates real-world EV operating conditions rather than relying solely on laboratory data. This ensures that the developed model accurately reflects practical electric vehicle environments. en_US
dc.identifier.doi 10.3390/wevj16110614
dc.identifier.issn 2032-6653
dc.identifier.scopus 2-s2.0-105023046879
dc.identifier.uri https://doi.org/10.3390/wevj16110614
dc.identifier.uri https://hdl.handle.net/20.500.12514/10060
dc.language.iso en en_US
dc.publisher MDPI en_US
dc.relation.ispartof World Electric Vehicle Journal en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fault Classification en_US
dc.subject Stacking Ensemble Learning en_US
dc.subject Induction Motor en_US
dc.subject Electric Vehicle en_US
dc.subject Predictive Maintenance en_US
dc.title Advanced Fault Classification in Induction Motors for Electric Vehicles Using a Stacking Ensemble Learning Approach en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 59251125200
gdc.author.scopusid 57205574707
gdc.author.scopusid 57200142934
gdc.author.scopusid 58083655800
gdc.author.scopusid 57188584178
gdc.author.scopusid 40661700700
gdc.author.wosid Özüpak, Yıldırım/R-8902-2018
gdc.author.wosid Aslan, Emrah/Hpg-5766-2023
gdc.author.wosid Khadar, Saad/Itt-2257-2023
gdc.author.wosid Mohamad, Mahmoud/W-6512-2019
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp [Benkaihoul, Said; Khadar, Saad] Ziane Achour Univ, Fac Sci & Technol, Dept Elect Engn, Appl Automation & Ind Diag Lab, Djelfa 17000, Algeria; [Ozupak, Yildirim] Dicle Univ, Silvan Vocat Sch, Dept Elect Energy, TR-21000 Diyarbakir, Turkiye; [Aslan, Emrah] Mardin Artuklu Univ, Fac Engn & Architecture, Dept Comp Engn, TR-47000 Mardin, Turkiye; [Almalki, Mishari Metab] Al Baha Univ, Fac Engn, Dept Elect Engn, Alaqiq 65779, Saudi Arabia; [Mossa, Mahmoud A.] Menia Univ, Fac Engn, Elect Engn Dept, Al Minya 61111, Egypt en_US
gdc.description.issue 11 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 16 en_US
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q2
gdc.identifier.openalex W7104592050
gdc.identifier.wos WOS:001623510400001
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.79
gdc.opencitations.count 0
gdc.plumx.newscount 1
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.wos.citedcount 0

Files