MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Energy-Aware Scheduling in Flow Shops: a Novel Artificial Neural Network-Driven Multi-Objective Optimization

dc.authorid Aslan, Sehmus/0000-0003-1886-3421
dc.authorscopusid 57561903300
dc.contributor.author Aslan, Şehmus
dc.contributor.other Department of Management / İşletme Bölümü
dc.date.accessioned 2025-02-15T19:35:36Z
dc.date.available 2025-02-15T19:35:36Z
dc.date.issued 2025
dc.department Artuklu University en_US
dc.department-temp [Aslan Ş.] Business Administration, Mardin Artuklu University, Mardin, Turkey en_US
dc.description.abstract Group technology is a managerial strategy used to optimize production by reducing setup times, lead times, and work-in-process inventories. Research on flow-shop sequence-dependent group scheduling problems (FSDGSPs) has primarily focused on minimizing makespan and total flow time to improve efficiency. However, the need for energy-efficient scheduling in FSDGSPs remains underexplored despite increasing sustainability concerns. To address this, the energy-efficient flow-shop sequence-dependent group scheduling problem (EEFSDGSP) is introduced. A novel multi-objective optimization (MOO) technique, the artificial neural network-based multi-objective genetic algorithm (ANN-MOGA), is proposed to minimize makespan and energy consumption in EEFSDGSP. ANN-MOGA advances MOO by using a neural network to evaluate fitness and guide selection, reducing computational complexity versus traditional methods like NSGA-II and SPEA2. A post-processing step (PPANNS) further enhances solution diversity and distribution. Results show ANN-MOGA, especially with PPANNS, outperforms NSGA-II and competes effectively with SPEA2 in larger problem instances. © 2024 Informa UK Limited, trading as Taylor & Francis Group. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.citationcount 0
dc.identifier.doi 10.1080/0305215X.2024.2420738
dc.identifier.endpage 360 en_US
dc.identifier.issn 0305-215X
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-105001837646
dc.identifier.scopusquality Q2
dc.identifier.startpage 333 en_US
dc.identifier.uri https://doi.org/10.1080/0305215X.2024.2420738
dc.identifier.volume 57 en_US
dc.identifier.wos WOS:001353188900001
dc.identifier.wosquality Q2
dc.institutionauthor Aslan, Ş.
dc.language.iso en en_US
dc.publisher Taylor and Francis Ltd. en_US
dc.relation.ispartof Engineering Optimization en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject Artificial Neural Network en_US
dc.subject Energy Aware en_US
dc.subject Flow-Shop Group Scheduling en_US
dc.subject Genetic Algorithm en_US
dc.subject Multi-Objective Optimization en_US
dc.title Energy-Aware Scheduling in Flow Shops: a Novel Artificial Neural Network-Driven Multi-Objective Optimization en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication 76f98a49-f89b-43fc-94a3-18f41bf5c229
relation.isAuthorOfPublication.latestForDiscovery 76f98a49-f89b-43fc-94a3-18f41bf5c229
relation.isOrgUnitOfPublication 6734bfde-68ad-4d0b-9652-37a492c2eff0
relation.isOrgUnitOfPublication.latestForDiscovery 6734bfde-68ad-4d0b-9652-37a492c2eff0

Files