Energy-Aware Scheduling in Flow Shops: a Novel Artificial Neural Network-Driven Multi-Objective Optimization
dc.authorid | Aslan, Sehmus/0000-0003-1886-3421 | |
dc.authorscopusid | 57561903300 | |
dc.contributor.author | Aslan, Şehmus | |
dc.contributor.other | Department of Management / İşletme Bölümü | |
dc.date.accessioned | 2025-02-15T19:35:36Z | |
dc.date.available | 2025-02-15T19:35:36Z | |
dc.date.issued | 2025 | |
dc.department | Artuklu University | en_US |
dc.department-temp | [Aslan Ş.] Business Administration, Mardin Artuklu University, Mardin, Turkey | en_US |
dc.description.abstract | Group technology is a managerial strategy used to optimize production by reducing setup times, lead times, and work-in-process inventories. Research on flow-shop sequence-dependent group scheduling problems (FSDGSPs) has primarily focused on minimizing makespan and total flow time to improve efficiency. However, the need for energy-efficient scheduling in FSDGSPs remains underexplored despite increasing sustainability concerns. To address this, the energy-efficient flow-shop sequence-dependent group scheduling problem (EEFSDGSP) is introduced. A novel multi-objective optimization (MOO) technique, the artificial neural network-based multi-objective genetic algorithm (ANN-MOGA), is proposed to minimize makespan and energy consumption in EEFSDGSP. ANN-MOGA advances MOO by using a neural network to evaluate fitness and guide selection, reducing computational complexity versus traditional methods like NSGA-II and SPEA2. A post-processing step (PPANNS) further enhances solution diversity and distribution. Results show ANN-MOGA, especially with PPANNS, outperforms NSGA-II and competes effectively with SPEA2 in larger problem instances. © 2024 Informa UK Limited, trading as Taylor & Francis Group. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.citationcount | 0 | |
dc.identifier.doi | 10.1080/0305215X.2024.2420738 | |
dc.identifier.endpage | 360 | en_US |
dc.identifier.issn | 0305-215X | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-105001837646 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 333 | en_US |
dc.identifier.uri | https://doi.org/10.1080/0305215X.2024.2420738 | |
dc.identifier.volume | 57 | en_US |
dc.identifier.wos | WOS:001353188900001 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Aslan, Ş. | |
dc.language.iso | en | en_US |
dc.publisher | Taylor and Francis Ltd. | en_US |
dc.relation.ispartof | Engineering Optimization | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.scopus.citedbyCount | 1 | |
dc.subject | Artificial Neural Network | en_US |
dc.subject | Energy Aware | en_US |
dc.subject | Flow-Shop Group Scheduling | en_US |
dc.subject | Genetic Algorithm | en_US |
dc.subject | Multi-Objective Optimization | en_US |
dc.title | Energy-Aware Scheduling in Flow Shops: a Novel Artificial Neural Network-Driven Multi-Objective Optimization | en_US |
dc.type | Article | en_US |
dc.wos.citedbyCount | 2 | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 76f98a49-f89b-43fc-94a3-18f41bf5c229 | |
relation.isAuthorOfPublication.latestForDiscovery | 76f98a49-f89b-43fc-94a3-18f41bf5c229 | |
relation.isOrgUnitOfPublication | 6734bfde-68ad-4d0b-9652-37a492c2eff0 | |
relation.isOrgUnitOfPublication.latestForDiscovery | 6734bfde-68ad-4d0b-9652-37a492c2eff0 |