A Deep Learning Approach for Fault Detection in Photovoltaic Systems Using MobileNetV3

dc.contributor.author Özüpak, Yıldırım
dc.contributor.author Aslan, Emrah
dc.contributor.author Mansurov, Shuhratjon
dc.contributor.author Çetin, Ziya
dc.date.accessioned 2025-08-15T19:11:15Z
dc.date.available 2025-08-15T19:11:15Z
dc.date.issued 2025
dc.description.abstract This study investigates the use of the MobileNetV3 deep learning architecture for fault detection in Photovoltaic (PV) systems. The research developed a model capable of classifying solar panels under six different conditions: clean, physically damaged, electrically damaged, snow covered, bird droppings covered, and dusty panels. Using a dataset obtained from Kaggle, pre-processed and divided into training (70%) and test (30%) sets, the MobileNetV3 model achieved a validation accuracy of 95%. Confusion matrix analysis showed high classification accuracy, in particular 100% accuracy for snow-covered and bird droppings-covered panels, with F1 scores as high as 98.73% for certain classes. Training and validation curves confirmed stable learning with low loss values. Compared to models such as EfficientB0 + SVM and InceptionV3-Net + U-Net, MobileNetV3 demonstrated competitive accuracy and computational efficiency, making it suitable for resource-constrained devices. This approach improves energy efficiency, reduces manual inspection, and promotes sustainable energy production. Future work will expand the dataset to include different climatic conditions and fault scenarios, improving the robustness and real-world applicability of the model. en_US
dc.identifier.doi 10.54287/gujsa.1596110
dc.identifier.issn 2147-9542
dc.identifier.uri https://doi.org/10.54287/gujsa.1596110
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/1306460/a-deep-learning-approach-for-fault-detection-in-photovoltaic-systems-using-mobilenetv3
dc.identifier.uri https://hdl.handle.net/20.500.12514/9183
dc.language.iso en en_US
dc.relation.ispartof Gazi University Journal of Science Part A: Engineering and Innovation en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.title A Deep Learning Approach for Fault Detection in Photovoltaic Systems Using MobileNetV3 en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Artuklu University en_US
gdc.description.departmenttemp Dicle Üniversitesi,Mardin Artuklu Üniversitesi,Dicle Üniversitesi,Dicle Üniversitesi en_US
gdc.description.endpage 212 en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality N/A
gdc.description.startpage 197 en_US
gdc.description.volume 12 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W4408855630
gdc.identifier.trdizinid 1306460
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.6225402E-9
gdc.oaire.isgreen false
gdc.oaire.keywords MobileNetV3;Photovoltaic Systems;Fault Detection;Deep Learning
gdc.oaire.keywords Electrical Engineering (Other)
gdc.oaire.keywords Elektrik Mühendisliği (Diğer)
gdc.oaire.popularity 3.498505E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 2.9336946
gdc.openalex.normalizedpercentile 0.79
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.virtual.author Aslan, Emrah
relation.isAuthorOfPublication ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isAuthorOfPublication.latestForDiscovery ea96819c-4e93-4dc4-a97c-2ca74bd3f34d
relation.isOrgUnitOfPublication 39ccb12e-5b2b-4b51-b989-14849cf90cae
relation.isOrgUnitOfPublication.latestForDiscovery 39ccb12e-5b2b-4b51-b989-14849cf90cae

Files