MAÜ GCRIS Standart veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Engine Fault Detection by Sound Analysis and Machine Learning

dc.authoridZan, Hasan/0000-0002-8156-016X
dc.authorscopusid59251953800
dc.authorscopusid36695480300
dc.authorscopusid55293781400
dc.authorscopusid57207469878
dc.authorwosidERTUGRUL, Ömer/F-7057-2015
dc.authorwosidYILDIZ, ABDULNASIR/IZQ-2323-2023
dc.authorwosidZan, Hasan/AAF-2775-2019
dc.contributor.authorAkbalik, Ferit
dc.contributor.authorYildiz, Abdulnasir
dc.contributor.authorErtugrul, Omer Faruk
dc.contributor.authorZan, Hasan
dc.contributor.authorZan, Hasan
dc.date.accessioned2025-02-15T19:37:16Z
dc.date.available2025-02-15T19:37:16Z
dc.date.issued2024
dc.departmentArtuklu Universityen_US
dc.department-temp[Akbalik, Ferit] Batman Univ, Social Sci Vocat Sch, TR-72040 Batman, Turkiye; [Yildiz, Abdulnasir] Dicle Univ, Dept Elect & Elect Engn, TR-21280 Diyarbakir, Turkiye; [Ertugrul, Omer Faruk] Batman Univ, Dept Elect & Elect Engn, TR-72040 Batman, Turkiye; [Zan, Hasan] Mardin Artuklu Univ, Vocat Sch, TR-47200 Mardin, Turkiyeen_US
dc.descriptionZan, Hasan/0000-0002-8156-016Xen_US
dc.description.abstractTraditional vehicle fault diagnosis methods rely heavily on the expertise of mechanics or diagnostic tools available at service centers, which can be costly, time-consuming, and may not always provide accurate results. This study presents a comprehensive vehicle fault diagnosis framework, which utilized Mel-Frequency Cepstral Coefficients (MFCCs), Discrete Wavelet Transform (DWT)-based features, and the Extreme Learning Machine (ELM) classifier. To address the limitations of previous works, the proposed framework leverages a large, diverse dataset encompassing various vehicle models and real-world operating conditions. Significantly improved robustness and generalizability of the fault diagnosis system were achieved. The results of the experiments demonstrate the superiority of the MFCC-based features combined with the ELM classifier, achieving the highest performance metrics in terms of accuracy, precision, recall, F1-score, macro F1-score, and weighted F1-score, which are 92.17%, 92.24%, 92.22%, 92.10%, and 92.06%, respectively. Slightly lower performance was obtained while employing the DWT-based features compared to employing MFCC-based features. Additionally, frequency analysis was conducted to identify specific frequency bins, which are the most indicative of different fault types in providing valuable guidance for future diagnostic efforts. Overall, the proposed framework provides a reliable and practical solution for accurate vehicle fault detection, paving the way for future advancements in automotive diagnostics.en_US
dc.description.provenanceSubmitted by GCRIS Admin (gcris@artuklu.edu.tr) on 2025-02-15T19:37:15Z No. of bitstreams: 0en
dc.description.provenanceMade available in DSpace on 2025-02-15T19:37:16Z (GMT). No. of bitstreams: 0 Previous issue date: 2024en
dc.description.sponsorshipThe numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).en_US
dc.description.woscitationindexScience Citation Index Expanded
dc.identifier.citationcount1
dc.identifier.doi10.3390/app14156532
dc.identifier.issn2076-3417
dc.identifier.issue15en_US
dc.identifier.scopus2-s2.0-85200747347
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://doi.org/10.3390/app14156532
dc.identifier.urihttps://hdl.handle.net/20.500.12514/6158
dc.identifier.volume14en_US
dc.identifier.wosWOS:001286950400001
dc.identifier.wosqualityQ2
dc.language.isoenen_US
dc.publisherMdpien_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectVehicle Fault Detectionen_US
dc.subjectExtreme Learning Machinesen_US
dc.subjectMel-Frequency Cepstral Coefficientsen_US
dc.subjectWavelet Transformen_US
dc.titleEngine Fault Detection by Sound Analysis and Machine Learningen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb6be3e7d-3260-4abd-bb65-c5dae94c0182
relation.isAuthorOfPublication.latestForDiscoveryb6be3e7d-3260-4abd-bb65-c5dae94c0182

Files