Bilgisayar Teknolojileri Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.12514/175
Browse
Browsing Bilgisayar Teknolojileri Bölümü Koleksiyonu by Access Right "info:eu-repo/semantics/openAccess"
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
Conference Object Alt Piksel Metodu İle Çözünürlüğü Geliştirilmiş Tıbbi Görüntülerde Performans Analizi(ICONSAD'23, 2023) Çınar, Ahmet; Ağalday, FatihGörüntü işleme dünyasında düşük çözünürlüklü bir görüntünün veya videonun yüksek çözünürlüklü olarak yeniden iyileştirilmesi araştırmacıların oldukça ilgisini çekmektedir. Süper çözünürlük olarak adlandırılan bu işlemler tıbbi görüntüleme, uydu görüntüleme ve yüz tanıma gibi birçok alanda doğrudan uygulama alanı bulmaktadır. Süper çözünürlük sorunu genel olarak yüksek çözünürlük verilerinin düşük geçişli filtrelenmiş, alt örneklenmiş ve gürültülü bir versiyonu olarak kabul edilir. Görüntü işlemede kullanılan bilgisayarlı tomografi ve manyetik rezonans görüntüleme gibi teknikler hastalıkların teşhis edilmesinde uzun süredir kullanılmaktadır. Uzman hekimlerin tıbbı görüntülerin doğru ve erken teşhisinde kullanılmak üzere makine öğrenmesi yöntemlerinden de yararlanılmaktadır. Bu yöntemler sayesinde aynı tıbbı görüntüde çakışan uzman görüşlerinin doğru karar vermesine katkıda bulunmak üzere mevcut tıbbı görüntülerin çözünürlüklerini arttırmaya yönelik bir çalışma sunulmuştur. Bu çalışmada tıbbı görüntü formatı dicom dosyalarının jpg gibi bilinen görüntü formatlarına dönüştürülerek algılanması zor olan tümörleri teşhis etmek için medikal görüntülere alt piksel yöntemi uygulanarak görüntünün çözünürlüğü arttırılmış ve görüntülerin benzerlik analizi yapılmıştır. Alt piksel evrişimli ağ modelinde görüntülerin r yükseltme faktörü kadar görüntü büyütmek için model r x r oranında özellik haritasına ihtiyaç duymaktadır. Bu çalışmada görüntünün kalitesini ve benzerliği değerlendirmek için yaygın olarak kullanılan PSNR Tepe Sinyal Gürültü Oranı yönteminden faydalanılmıştır. Alt piksel evrişimli sinir ağı ile çözünürlüğü arttırılan görüntülerin PSNR yöntemi ile benzerlikleri değerlendirilmiştir. Sonuç olarak bu çalışmada beyin tümörlerinden oluşan medikal görüntülerin çözünürlüğü arttırılmış ve yöntemin sonuçları tartışılmıştır. Çalışmanın sonunda medikal görüntüler üzerinde yapılacak araştırma ile ilgili bilgiler sunulmuştur.Article Automatic Detection of Brain Tumors With the Aid of Ensemble Deep Learning Architectures and Class Activation Map Indicators by Employing Magnetic Resonance Images(Elsevier, 2024) Turk, Omer; Ozhan, Davut; Acar, Emrullah; Akinci, Tahir Cetin; Yilmaz, Musa; Türk, ÖmerToday, as in every life-threatening disease, early diagnosis of brain tumors plays a life-saving role. The brain tumor is formed by the transformation of brain cells from their normal structures into abnormal cell structures. These formed abnormal cells begin to form in masses in the brain regions. Nowadays, many different techniques are employed to detect these tumor masses, and the most common of these techniques is Magnetic Resonance Imaging (MRI). In this study, it is aimed to automatically detect brain tumors with the help of ensemble deep learning architectures (ResNet50, VGG19, InceptionV3 and MobileNet) and Class Activation Maps (CAMs) indicators by employing MRI images. The proposed system was implemented in three stages. In the first stage, it was determined whether there was a tumor in the MR images Tumor) were detected from MR images (Multi-class Approach). In the last stage, CAMs of each tumor group were created as an alternative tool to facilitate the work of specialists in tumor detection. The results showed that the overall accuracy of the binary approach was calculated as 100% on the ResNet50, InceptionV3 and MobileNet architectures, and 99.71% on the VGG19 architecture. Moreover, the accuracy values of 96.45% with ResNet50, 93.40% with VGG19, 85.03% with InceptionV3 and 89.34% with MobileNet architectures were obtained in the multi-class approach.Article Classification of Epilepsy Types from Electroencephalogram Time Series Using Continuous Wavelet Transform Scalogram-Based Convolutional Neural Network(ASTM International, 2020) Türk, Ömer; Akpolat, Veysi; Varol, Sefer; Aluçlu, Mehmet Ufuk; Özerdem, Mehmet Siraç; Türk, ÖmerDuring the supervisory activities of the brain, the electrical activities of nerve cell clusters produce oscillations. These complex biopotential oscillations are called electroencephalogram (EEG) signals. Certain diseases, such as epilepsy, can be detected by measuring these signals. Epilepsy is a disease that manifests itself as seizures. These seizures manifest themselves in different characteristics. These different characteristics divide epilepsy seizure types into two main groups: generalized and partial epilepsy. This study aimed to classify different types of epilepsy from EEG signals. For this purpose, a scalogram-based, deep learning approach has been developed. The utilized classification process had the following main steps: the scalogram images were obtained by using the continuous wavelet transform (CWT) method. So, a one-dimension EEG time series was converted to a two-dimensional time-frequency data set in order to extract more features. Then, the increased dimension data set (CWT scalogram images) was applied to the convolutional neural network (CNN) as input patterns for classifying the images. The EEG signals were taken from Dicle University, Neurology Clinic of Medical School. This data consisted of four classes: healthy brain waves, generalized preseizure, generalized seizure, and partial epilepsy brain waves. With the proposed method, the average accuracy performance of three of the EEG records' classes (healthy, generalized preseizure, and generalized seizure), and that of all four classes of EEG records were 90.16 % (± 0.20) and 84.66 % (± 0.48). According to these results, regarding the specific accuracy ratings of the recordings, the healthy EEG records scored 91.29 %, generalized epileptic seizure records were at 96.50 %, partial seizure EEG records scored 89.63 %, and the preseizure EEG records had a 90.44 % rating. The results of the proposed method were compared to the results of both similar studies and conventional methods. As a result, the performance of the proposed method was found to be acceptable.Article Derin Öğrenme Mimarilerini Kullanarak Katarakt Tespiti(Avrupa Bilim ve Teknoloji Dergisi, 2021) Ağalday, Fatih; Çınar, Ahmetİnsanın yaşam kalitesini olumsuz olarak etkileyen görme kayıplarını daha erken bir dönemde teşhis etmek önemlidir. İnsan yaşının ilerlemesi ile birlikte görme bozuklukları ve bazen tamamen görme kaybına neden olmaktadır. Gözün anatomik yapısında bulunan anormallikler göz hastalıklarının erken dönemlerinde göz yapısına ait görsellerle de tespit edilebilmektedir. Katarat dünyada milyonlarca insanı etkileyen görme bozukluğunun en önemli nedenidir. Otomatik tanı sistemleri ile sağlık hizmeti kullanımı hafifleyerek uzmanlara yardımcı olmayı amaçlamaktadır. Bu makalede renkli fundus görüntüler kullanılarak katarat hastalığına otomatik tanı sistemi ele alınmıştır. Katarat hastalığının otomatik tanımlanması için evrişimli sinir ağı (CNN) ve derin artık ağ (DRN) kullanılarak sınıflandırma yöntemi kullanılmıştır. Veri seti 5000 hastanın sağ ve sol gözlerine ait renkli fundus fotoğrafları ve doktorların her bir hastanın sağ ve sol gözüne konulmuş teşhisler için anahtar kelimler ile yapılandırılmış bir veri tabanıdır. Bu veri seti gerçek yaşamda hasta gruplarını temsil etmektedir. Çinli bir şirket olan Shanggong Medical Technology Co., Ltd. Şirketi tarafından farklı hastane ve tıp merkezlerinden elde edilen veriler toplanmıştır. Veri setinde hastalar 8 farklı etikete sınıflandırma yapılmıştır. Renkli fundus görüntüler sayesinde farklı evrelere ait katarat semptomlarına ait özellikler bulunmaktadır. Önerilen otomatik tanı sistemi güncel sınıflandırma sistemlerine oranla daha başarılı olduğu görülmektedir. DRN yönteminin CNN yöntemine göre doğruluk oranına göre daha yüksektir. CNN modelinde doğruluk oranı %89 civarında iken DRN modelinde doğruluk oranı %95 olduğu görülmektedir.Presentation Derin Öğrenme Yöntemleri ile Küçük Olmayan Hücre Akciğer Kanseri Tümör Karakterizasyonu(2022) Çınar, Ahmet; Ağalday, FatihKüresel kanser araştırmaları ölüm oranlarına göre bulgular en tehlikeli hastalık olarak Akciğer kanserini göstermektedir. Solunum yolu hastalıklarına neden olan havada bulunan küçük çaplı partikül maddeler akciğer kanserine neden olmaktadır. Akciğer kanseri için en önemli risk faktörü sigara ve benzeri alışkanlıklardır. Hastalığın tanısında manyetik rezonans görüntüleme ve bilgisayarlı tomografi gibi teknikler kullanılarak akciğer bölgesinin detaylı görüntülenmesi erken akciğer nodüllerini bulmak için cerrahi bir yöntem olmayan tespit yöntemlerinden biridir. Bilgisayar destekli görüntüler sayesinde akciğer nodülü tespit sisteminin kullanılması erken teşhis konusunda uzman doktorlara yardımcı olmaktadır. Günümüzde PET-CT görüntüleme ile uzman kişilerin onkolojik tanısına oldukça katkı sunmaktadır. Tıbbi görüntüler radyologlar ve doktorlar tarafından teşhis edilmektedir. Ancak uzmanlar tarafından yapılan bu teşhis için dikkat ve uzun süreli incelenmesi yorgunluğa ve hatalara neden olabilmektedir. Bu nedenle görüntülerin değerlendirilmesi için otomatikleştirilmesine ihtiyaç vardır. Evrişimsel Sinir Ağı gibi derin öğrenme algoritmaları, tümörleri tespit etmek ve sınıflandırmak için yaygın olarak kullanılmaktadır. Derin öğrenmeyi temel alan akciğer kanseri erken teşhis ve analiz yönteminin temel özelliği, akciğer Bilgisayarlı Tomografi görüntülerini bilgisayar sistemi ve yardımcı tanı sistemi aracılığıyla analiz ederek, dahil edilen görüntülerdeki akciğer nodüllerinin özelliklerini çıkarmaktır. İyi huylu ve kötü huylu akciğer nodüllerinin görüntülerini sınıflandırmanın temel amacı, akciğer nodülü hakkında doktorlara ve hastalara daha bilimsel ve güvenilir bir yardımcı sınıflandırma sonucu sağlamak, böylece teşhis ve tedavi sürecinin daha doğru olabilmesi, doktorlarının klinik muayenesini ve görünütüyü okuma iş yükünü azaltmaktır. Bu çalışmada, derin öğrenmenin en yaygın kullanımlarından biri olan transfer öğrenme modeli kullanılacaktır. Bu yöntem ile önceden eğitilmiş ağlar ile farklı sınıfa ait gerçek görüntüler eğitilmiştirArticle Employing deep learning architectures for image-based automatic cataract diagnosis(TÜBİTAK, 2021) Acar, Emrullah; Türk, Ömer; Ertuğrul, Ömer Faruk; Aldemir, Erdoğan; Türk, ÖmerVarious eye diseases affect the quality of human life severely and ultimately may result in complete vision loss. Ocular diseases manifest themselves through mostly visual indicators in the early or mature stages of the disease by showing abnormalities in optics disc, fovea, or other descriptive anatomical structures of the eye. Cataract is among the most harmful diseases that affects millions of people and the leading cause of public vision impairment. It shows major visual symptoms that can be employed for early detection before the hypermature stage. Automatic diagnosis systems intend to assist ophthalmological experts by mitigating the burden of manual clinical decisions and on health care utilization. In this study, a diagnosis system based on color fundus images are addressed for cataract disease. Deep learning-based models were performed for the automatic identification of cataract diseases. Two pretrained robust architectures, namely VGGNet and DenseNet, were employed to detect abnormalities in descriptive parts of the human eye. The proposed system is implemented on a wide and unique dataset that includes diverse color retinal fundus images that are acquired comparatively in low-cost and common modality, which is considered a major contribution of the study. The dataset show symptoms of cataracts in different phases and represents the characteristics of the cataract. By the proposed system, dysfunction associated with cataracts could be identified in the early stage. The achievement of the proposed system is compared to various traditional and up-to-date classification systems. The proposed system achieves 97.94% diagnosis rate for cataract disease grading.Article Epilepsy Detection by Using Scalogram Based Convolutional Neural Network from EEG Signals(MDPI, 2019) Türk, Ömer; Özerdem, Mehmet Siraç; Türk, ÖmerThe studies implemented with Electroencephalogram (EEG) signals are progressing very rapidly and brain computer interfaces (BCI) and disease determinations are carried out at certain success rates thanks to new methods developed in this field. The effective use of these signals, especially in disease detection, is very important in terms of both time and cost. Currently, in general, EEG studies are used in addition to conventional methods as well as deep learning networks that have recently achieved great success. The most important reason for this is that in conventional methods, increasing classification accuracy is based on too many human efforts as EEG is being processed, obtaining the features is the most important step. This stage is based on both the time-consuming and the investigation of many feature methods. Therefore, there is a need for methods that do not require human effort in this area and can learn the features themselves. Based on that, two-dimensional (2D) frequency-time scalograms were obtained in this study by applying Continuous Wavelet Transform to EEG records containing five different classes. Convolutional Neural Network structure was used to learn the properties of these scalogram images and the classification performance of the structure was compared with the studies in the literature. In order to compare the performance of the proposed method, the data set of the University of Bonn was used. The data set consists of five EEG records containing healthy and epilepsy disease which are labeled as A, B, C, D, and E. In the study, A-E and B-E data sets were classified as 99.50%, A-D and B-D data sets were classified as 100% in binary classifications, A-D-E data sets were 99.00% in triple classification, A-C-D-E data sets were 90.50%, B-C-D-E data sets were 91.50% in quaternary classification, and A-B-C-D-E data sets were in the fifth class classification with an accuracy of 93.60%.Conference Object Etkili Alt Piksel Evrişimli Sinir Ağı Süper Çözünürlük Yaklaşımı(All Sciences Proceedings, 2023) Ağalday, Fatih; Çınar, AhmetTek görüntü süper çözünürlüğü, yüksek çözünürlüklü bir görüntüyü karşılık gelen düşük çözünürlüklü görüntüden kurtarmayı amaçlayan görüntü restorasyonundaki önemli içeriklerden biridir. Bu içeriklere örnek olarak kameralı izleme sisteminde insan yüzünün çözünürlüğünün düşük olması nedeniyle bazen bir kişiyi tanımak zordur. Yüz tanıma dışında, süper çözünürlüklü uygulamalar genellikle tıbbi görüntüleme ve uydu görüntüleme gibi alanlarda bulunabilir. Derin sinir ağlarına dayalı modeller tek görüntü süper çözünürlüğü için hem yeniden yapılandırma doğruluğu hem de hesaplama performansı açısından büyük başarı elde etmektedir. Bu yöntemlerde, düşük çözünürlüklü giriş görüntüsü, yeniden yapılandırmadan önce tek bir filtre, genellikle bikübik enterpolasyon kullanılarak yüksek çözünürlüklü alana yükseltilir. Süper çözünürlük işleminin yüksek çözünürlük alanında gerçekleştirildiği anlamına gelir. Bunun optimalin altında olduğunu ve hesaplama karmaşıklığı eklediğini gösteriyoruz. Bu yazıda görüntülerin gerçek zamanlı süper çözünürlük yapabilen evrişimli sinir ağını sunulmaktadır. Bu işlemleri gerçekleştirebilmek için, öznitelik haritalarının düşük çözünürlüklü görüntü uzayında çıkarıldığı yeni bir evrişimli sinir ağı mimarisi önerilmektedir. Ek olarak, son düşük çözünürlük özellik haritalarını yüksek çözünürlük çıktısına yükseltmek için bir dizi yükseltme filtresini öğrenen verimli bir alt piksel evrişim katmanı sunulmaktadırArticle How advantageous is it to use computed tomography image-based artificial intelligence modelling in the differential diagnosis of chronic otitis media with and without cholesteatoma?(European Review for Medical and Pharmacological Sciences, 2023) Türk, Ö.; Ayral, M., Can, Ş., Esen, D., Topçu, İ., Akil, F., Temiz, H.Abstract. – OBJECTIVE: Cholesteatoma (CHO) developing secondary to chronic otitis media (COM) can spread rapidly and cause important health problems such as hearing loss. Therefore, the presence of CHO should be diagnosed promptly with high accuracy and then treated surgically. The aim of this study was to investigate the effectiveness of artificial intelligence applications (AIA) in documenting the presence of CHO based on computed tomography (CT) images. PATIENTS AND METHODS: The study was performed on CT images of 100 CHO, 100 non-cholesteatoma (N-CHO) COM, and 100 control patients. Two AIA models including ResNet50 and MobileNetV2 were used for the classification of the images. RESULTS: Overall accuracy rate was 93.33% for the ResNet50 model and 86.67% for the MobilNetV2 model. Moreover, the diagnostic accuracy rates of these two models were 100% and 95% in the CHO group, 90% and 85% in the N-CHO group, and 90% and 80% in the control group, respectively. CONCLUSIONS: These results indicate that the use of AIA in the diagnosis of CHO will improve the diagnostic accuracy rates and will also help physicians in terms of reducing their workload and facilitating the selection of the correct treatment strategy.Article Modeling Automobile Sales in Turkiye with Regression-Based Machine Learning Algorithms(İstanbul Üniversitesi, 2023) Babaoglu,Merve; Coşkunçay,Ahmet; Aydın,TolgaThe automobile sector is the locomotive of industrialized countries. The employment opportunities it creates are of great value because of its interconnectedness with other industries and the value it adds. Demand forecasting studies in such an important sector are one of the main drivers for the provision of raw materials and services needed in the future. In this study, 10 independent variables are used that directly or indirectly affect the level of car sales, which is our dependent variable. These variables are gross domestic product, real sector confidence index, capital expenditures, household consumption expenditures, inflation rate, consumer confidence index, percentage of one-year term deposits, and oil barrel, gold, and dollar prices. The dataset used consists of annual data between 2000 and 2021. To examine the sales forecast model, two variables that affect minimum sales are first extracted from the model using the least squares method. Linear Regression, Decision Tree, Random Forest, Ridge, AdaBoost, Elastic-net, and Lasso Regression algorithms are applied to build a predictive model with these variables. The Mean Squared Error (MSE), Mean Absolute Error (MAE), and coefficient of determination (R2) are used to compare the performance of the predictive models. This study proposes an approach for sectors affected directly or indirectly by automotive sales to gain foresight on this issue.Article Performance Improvement of Genetic Algorithm Based Exam Seating Solution by Parameter Optimization(Journal of Innovative Science and Engineering (JISE), 2022) Ağalday, Fatih; Nizam, AliExam seat allocation has become a complex problem, with an increasing number of students, subjects, exams, departments, and rooms in higher education institutions. The requirements and constraints of this problem demonstrate characteristics similar to extensively researched exam timetabling problems. They plan for a limited capacity effectively and efficiently. Additionally, exam seating requires a seating arrangement to reduce the number of cheating incidents. In the literature, several genetic algorithm-based methods have been recommended to prevent students, who are close friends, from sitting close during the exams while providing the best exam session arrangement. We improved the performance of the genetic algorithm using parameter optimization and a new elitism method to increase the saturation rate and accuracy. The algorithm was tested on a real-world dataset and demonstrated high potential for the realization of a high-quality seating arrangement compatible with the requirements of educational institutions.Conference Object SRGAN Modeli Uygulamaları(2022) Ağalday, Fatih; Çınar, AhmetAraç plaka, yüz tanıma ve tıbbi teşhis gibi görüntü detaylarının önemli olduğu görüntüler için düşük çözünürlüğe sahip görüntüler yetersiz kalmaktadır. Yüksek çözünürlüklere sahip görüntü sistemlerinin depolama ve maliyeti zordur. Bu amaçla düşük çözünürlüğe sahip görüntüden yüksek çözünürlüklü görüntü elde etmek amacıyla SRGAN modeli görüntü iyileştirmede iyi bir teknik olarak karşımıza çıkmaktadır. Bu model tekli bir görüntünün birden fazla görüntüsü kullanılarak yüksek çözünürlük elde etmek için kullanılan bir iyileştirme tekniğidir. Tekli görüntü kullanılarak yapılan görüntü iyileştirme problemi için enterpolasyon tabanlı yöntemler gibi derin öğrenme tabanlı farklı yöntemler önerilmiştir. Enterpolasyon tabanlı yöntemler görüntü iyileştirme için ilk önerilen basit yöntemlerden olmasına rağmen başarılı bir yöntemdi. Fakat detay gerektiren ve yüksek çözünürlük aranan yerlerde yetersiz kalmaktadır. Derin öğrenme yöntemlerinin yaygınlaşması ve evrişimli sinir ağlarının hızla literatüre girmesi süper çözünürlük modellerini de önemli hale getirmiştir. Birçok derin öğrenme tabanlı süper çözünürlük yöntemi bulunmakta olup bu araştırmada SRGAN modeline yer verilmiştir.Article SÜRÜ ZEKÂSI TABANLI ALGORİTMALAR İLE TÜRKİYE’NİN UZUN VADELİ ENERJİ TÜKETİM TAHMİNİ(Kahramanmaraş Sütçü İmam Üniversitesi, 2023) Babaoglu,Merve; Haznedar,BülentEnerji, ülkelerin en önemli uygarlık araçlarından biridir. Dünya genelinde artan nüfus, refah seviyesi ve gelişen teknoloji enerji tüketimini ciddi manada arttıran faktörlerdendir. Sürdürülebilir kalkınma çerçevesinde enerji üretiminin ve tüketiminin gerçekleştirilmesi günümüzün hiç şüphesiz en önemli hedeflerinden birisidir. Tercih edilen enerji türünün tükenebilir enerji kaynağı olması, bu enerji kaynaklarında dışa bağımlı olması ve çevresel durumlardan dolayı Türkiye’de gelecek yıllarda ne kadarlık enerjiye ihtiyaç duyulabileceğinin tahmin edilebilmesi büyük önem taşımaktadır. Bu önemli öngörüyü elde edebilmek için çalışmada, sürü zekâsı tabanlı meta-sezgisel algoritmalardan Balina Optimizasyon Algoritması (BOA) ve Yapay Arı Kolonisi Algoritması (YAK) tercih edilmiştir. Enerji tüketimini en çok etkileyen nüfus, gayri safi yurtiçi hâsıla (GSYH), ithalat ve ihracat gibi bağımsız değişkenlerin 1990-2009 yılları arasındaki veriler eğitim, 2009-2019 yılları arasındaki veriler ise test için kullanılmıştır. Elde edilen en iyi model sonuçlarına göre ise muhtemel dört senaryoda 2040 yılına kadar Türkiye’nin ihtiyaç duyabileceği enerji miktarı belirlenmeye çalışılmıştır. Bu hesaplamalara göre YAK modelinin test verileri için %86 R^2ve %8,74 MAPE (Ortalama Mutlak Yüzdesel Hata) değerleri ile BOA modeline göre daha iyi sonuç verdiği gözlenmiştir.Conference Object Turkey Long-Term Energy Consumption Prediction Using Whale Optimization Algorithm(IEEE(Institute of Electrical and Electronics Engineers), 2021) Babaoglu,Merve; Haznedar,BülentEnergy is one of the most important topics for the sustainable development of countries. Due to the fact that the energy used can be depleted, it imports many energy sources, and environmental factors, it is of great importance for Turkey to predict how much energy needs may be in the future. In this study, whale optimization algorithm (BOA) was preferred from heuristic algorithms in order to be able to estimate Turkey's energy demand until 2040. In order to determine the performance of the whale optimization algorithm, the results were compared with the genetic algorithm (GA). All models are arranged linearly and squared and the result is obtained. Data for independent variables such as gross domestic product (GDP), population, imports and exports affecting energy demand were used between 1990 and 2019. Modeling of the past 30 years has been provided to calculate the accuracy of the results. After obtaining the most suitable model, calculations were made according to 4 different scenarios for the next 20 years.