Elektrik ve Enerji Bölümü
Permanent URI for this communityhttps://hdl.handle.net/20.500.12514/112
Browse
Browsing Elektrik ve Enerji Bölümü by WoS Q "Q3"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Article Development software program for extraction of photovoltaic cell equivalent circuit model parameters based on the Newton–Raphson method(SpringerLink, 2022) Adak, Süleyman; Cangi, Hasan; Yılmaz, Ahmet Serdar; Arifoğlu, UğurFinding the equivalent circuit parameters for photovoltaic (PV) cells is crucial as they are used in the modeling and analysis of PV arrays. PV cells are made of silicon. These materials have a nonlinear characteristic. This distorts the sinusoidal waveform of the current and voltage. As a result, harmonic components are formed in the system. The PV cell is the smallest building block of the PV system and produces voltages between 0.5 V and 0.7 V. It serves as a source of current. The amount of radiation hitting the cell determines how much current it produces. In an ideal case, a diode and a parallel current source make up the equivalent circuit of the PV cell. In practice, the addition of a series and parallel resistor is made to the ideal equivalent circuit. There are many equivalent circuits in the literature on modeling the equivalent circuit of a PV cell. The PV cell single–diode model is the most used model due to its ease of analysis. In this study, the iterative method by Newton–Raphson was used to find the equivalent circuit parameters of a PV cell. This method is one of the most widely used methods for determining the roots of nonlinear equations in numerical analysis. In this study, five unknown parameters (Iph, Io, Rs, Rsh and m) of the PV cell equivalent circuit were quickly discovered with the software program prepared based on the Newton–Raphson method in MATLABArticle Harmonics Mitigation of Stand‑Alone Photovoltaic System Using LC Passive Filter(Journal of Electrical Engineering & Technology, 2021) Adak, SüleymanThis article investigates modeling and simulation of the of-grid photovoltaic (PV) system, and elimination of harmonic components using an LC passive flter. Pulse width modulation (PWM) inverter is used to convert the direct current to alternating current. It is very important in terms of energy quality that the inverter output current total harmonic distortion (THDI) is below the value given by standards. Harmonic components have negatively efect on of-grid PV power system. THDI should be kept below a certain level in order to prevent damage to the equipment in the of-grid system and to ensure a higher quality energy fow to reduce the total harmonic distortion (THD) of the solar inverter output current; LC passive flter must be connected to the output of the PWM inverter. There are many types of passive flters for solar inverters. One of the most widely used flter types is the LC flter. LC flters are used in of-grid systems. LC flter is smaller in size and lower cost than other flters. But it is more complicated to determine the parameters of the LC flter. Therefore, in order for the system to remain in a steady state, the parameters must be accurately calculated and analyzed. In this study, the output power of the solar inverter, switching frequency, bus voltage etc. values were determined and LC flter parameters were calculated. Since high inductance values are used in LC flters, the voltage drop increases in these flters. To reduce the voltage drop, the DC bus voltage must be increased, which increases the switching losses. LC flter is connected between the inverter and the nonlinear load to flter the harmonic components produced by the DC/DC boost converter, DC/AC inverter and non-linear load. Matlab/Simulink program was used in Simulation and analysis of of-grid solar system. Solar inverter output current THD was measured as 91.55%. After the LC flter is connected to the system, this value has dropped to 2.62%.Article The quality problems at low irradiance in the grid-connected photovoltaic systems(Springer Science and Business Media Deutschland GmbH, 2024) Adak, Süleyman; Cangi, H.Solar photovoltaic (PV) energy is one of the most prominent topics that have attracted the attention of researchers in recent years. The use of solar energy is increasing rapidly in the world. Although using PV energy has various advantages, it has some disadvantages. Among these disadvantages, power factor (PF) and total harmonic distortion (THD) issues are discussed in this article. When solar PV systems are integrated into the grid, various power quality problems arise. In addition, due to low power quality and high harmonics, power system components overheat and start operating in undesirable regions; causes great damage. The magnitude of PF and THD is dependent on solar irradiation values. In order to determine how the power quality in the grid-connected solar system is affected by changes in solar irradiation (G), results for various irradiation situations are presented and analyzed. In addition, at low irradiance values, the amplitude of harmonic components and reactive power increases, whereas the power factor of the PV system decreases. Low power factor and high amplitude of harmonics cause the efficiency of the solar system to decrease. In this study, PF and THDI values were measured on a particular cloudy day for analysis. An analysis of the solar PV system was conducted using Matlab/simulation program to model the grid-connected PV system. Thus, the analytical expression of the PF and THDI, which are dependent on irradiation, was found with a new method by using the Statistical Package for the Social Sciences (SPSS) program and the curve fitting method. Obtaining the analytical expressions for both solar irradiation (G) and power factor (PF) used the SPSS program and also solar irradiation (G) and total harmonic distortion (THDI) used the MATLAB curve fitting method which contributed to the science comparing to the existing literature. It can be prevented the low power quality by using such these expressions at low solar irradiation cases. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.